
TOWARDS A COMPONENT-BASED MIDDLEWARE FRAMEWORK FOR
CONFIGURABLE AND RECONFIGURABLE GRID COMPUTING

Geoff Coulson1, Paul Grace1, Gordon Blair1, Laurent Mathy1,
David Duce2, Chris Cooper2, Wai Kit Yeung1, Wei Cai1

1 Computing Dept., Lancaster University, Lancaster LA1 4YR, UK
+44 1524 593054

2 Dept of Computing, Oxford Brookes University, UK

contact: geoff@comp.lancs.ac.uk

ABSTRACT
Significant progress has been made in the design and
development of Grid middleware which, in its present form, is
founded on service-oriented architecture and web services
technologies. Nevertheless, Grid middleware is still severely
limited in key areas. In this paper we discuss work that aims to
address some of these limitations. First, we consider how ideas
and principles from the wider middleware research community
can usefully be applied in a Grid middleware context. Then we
focus on our own current work on integration of the Grid
middleware platform with an extensible set of interaction types
and advanced network services, and on an architectural
framework for Grid middleware internals. We believe that these
areas, along with complexity management, will become
increasingly important as sophisticated e-Science applications
start to exploit the potential of service-oriented architecture-
based middleware.

Keywords
Grid middleware, components, reflection, overlay networks.

1. INTRODUCTION
Following initial offerings such as Legion

[Grimshaw,99] and Globus 2 [Foster,01], the Open Grid
Services Architecture (OGSA) [OGSA,03] has recently
emerged as a ‘second generation’ distributed computing
approach to Grid middleware that is taking Grid support
forward from an era of ad-hoc platforms to a more
architected approach built on service-orientation and web
services technologies. This new approach promises a more
unified and principled approach to the support of Grid
applications. It augments generic web services standards by
defining a specific abstract notion of ‘Grid service’; and
also defines Grid-specific architectural elements such as:
service factories and registries; naming and referencing
conventions for service instances; support for stateful
services; soft-state-based garbage collection of service
instances; event notification from services; and version
management.

However, despite these advances, OGSA, and indeed
the web services technologies on which it is based, are still
deficient in many areas of distributed computing support

which, we believe, are key to the successful hosting of
large-scale, next generation, Grid applications.

We are particularly concerned with applications that
exhibit properties such as: high levels of heterogeneity in
terms of both networking and end-systems; real-time
interactive collaboration employing multiple media-types;
large scale, complexity and dynamic (re-)configuration;
QoS-sensitivity, and adaptability to changes in
environmental conditions. An illustrative example of such
an application is a world-wide collaborative visualization
session involving large numbers of scientists who join and
leave the session dynamically and are connected by a
variety of access networks and end-systems (including
wireless networks/PDAs), and involving multiple media
such as visualization data, live sensor output, vector
graphics and video [VESC,03].

We contend that such applications fundamentally
over-stretch the state-of-the-art in existing Grid support.
More specifically, our analysis is that current platforms
have three major areas of deficiency in terms of advanced
application support:

• Integration with advanced network services. One of
the attractions of OGSA is its simple SOAP-based
model of interaction. However, advanced applications
often require more sophisticated communications
services in terms of, for example, QoS management,
and, especially, different ‘interaction types’ (e.g. RPC,
asynchronous RPC, reliable/ unreliable messaging,
publish-subscribe, tuple-space-based interaction, peer-
to-peer based interaction, media-streaming, reliable/
unreliable group interaction, workflow interaction,
distributed voting or auction protocols, and various
transactional styles); note that much of the low-level
supporting research on interaction types is now
subsumed under the topic of overlay networks [El-
Sayed,03]).

• Architectural framework. OGSA focuses on
interoperability through the use of ‘ubiquitous’ Web
protocols and associated abstractions (e.g. WSDL).
However, this focus on interoperability needs to be

complemented with a strong internal platform
architecture that supports the integration of diverse
system elements in terms of both breadth (e.g. generic,
‘horizontal’ distributed services such as persistence,
visualization, conferencing) and depth (e.g. underlying
‘vertical’ communication services in intimate contact
with the network; and with other, end-system based,
resources).

• Complexity management. As Grid applications become
increasingly large, complex, and long-lived, there
emerges a strong need for their sophisticated
management. It is becoming recognised that the scale
and complexity of such systems demand a self-
managing or autonomic approach. Linking back to the
previous two points, it is crucial that such self-
management is applicable to the architecture of the
whole system including communication services. We
argue that this implies an open and programmable
approach to system construction.

In our current research we are addressing these
deficiencies through a pervasive component-based
approach that integrates middleware and (overlay)
networking functionality. Component technologies have
already been adopted successfully in Grid research to
promote structure and re-use at the application level (see,
e.g., [Furmento,02]). But here we propose the use of
component technology not only for applications but
throughout the platform architecture in terms of both
breadth and depth as outlined above. It is important to
stress that we are not proposing the use of traditional
heavyweight component technologies like Enterprise
JavaBeans (EJB). Rather, a major aim of the research is to
develop and apply a lightweight component model that
imposes minimal overhead, and can be used to build even
low-level, system-oriented, functionality. The component
model should also be system and language independent,
and API-neutral, so that it can be used to construct arbitrary
application-level distributed programming environments as
required (e.g. OGSA, web services, or, indeed, EJB).

A particular goal is to apply lightweight component-
based technology to construct an extensible family of open
and programmable overlay networks, thus providing an
approach that is network-centric, offers a strong
architecture for the system infrastructure, and facilitates
self-management through the inherent openness of
component-based structures [Blair,02]. This approach also
promises other important benefits: i) a extensible range of
interaction types, such as those listed above, can be made
available and selected according to the application domain
and/or context; and ii) it facilitates dynamic re-
configuration of communications (and other services) as
context changes (e.g. to maintain a visualization session
when an end user roams to a wireless network).

To validate our approach and provide focus for
practical experimentation we are using selected
collaborative visualization-based applications and
scenarios. Collaborative visualization is highly appropriate
for this purpose because of its inherent properties as
outlined above. It is also data and compute intensive which
makes it an ideal case study for an infrastructure that
aspires to manage both network and end-system resources
in an integrated manner.

In the remainder of this paper we first, in section 2,
discuss opportunities for applying research results from the
wider middleware research community to specifically Grid-
oriented middleware. This includes existing object-based
middleware standards and products, and recent results from
the advanced middleware research community. This work
mainly contributes in the breadth dimension. Following
this, section 3 discusses our research and results to date.
Our direction here accommodates the breadth dimension
but also opens up the depth dimension. Finally, section 4
draws conclusions and indicates areas of planned future
work.

2. OPPORTUNITIES FOR APPLYING
WIDER MIDDLEWARE RESEARCH
RESULTS IN GRID MIDDLEWARE

The implementation approach currently favoured by
Grid middleware developers (e.g. OGSA) is to layer the
Grid environment on top of existing web services
platforms. A good example of such a platform is Apache
Axis [Axis,02], which provides a Java-based environment
for web service deployment and invocation, and offers
sophisticated support for messaging in terms of SOAP’s
extension headers, intermediaries, and multiple transport
capability. Other examples of web services platforms are
Sun’s ONE and IBM’s WebSphere.

However, although these platforms are a useful
starting point, they have significant limitations as a Grid
middleware support infrastructure. Firstly, they are
extremely limited, in comparison to object-based
middleware platforms (e.g. RM-ODP and CORBA, and
industry-developed platforms like Java RMI, Enterprise
JavaBeans, DCOM, and the .NET remoting architecture) in
the following areas:
• provision of generic (horizontal, or breadth-oriented)

services—for example, CORBA supports generic
reusable services like fault tolerance, persistent state,
automated logging, load-balancing, transactional
object invocation, event distribution, and many others;

• scalability and performance—for example, EJB and
the CORBA Component Model have sophisticated
support for the automated activation/ passivation of

stateful services, and natively support services that
span multiple machines/ networks; in addition
performance engineering has been the subject of
intensive research in the object-based middleware
community over the last 10 years (see, e.g.,
[Coulson,02]).

In contrast, horizontal services are conspicuously
lacking in current Grid environments and there is great
potential here for reuse from the wider field. And in terms
of performance, the application focus of web services-
derived middleware has traditionally been on e-Commerce
where dependability and security are far more important
than performance (indeed, a single threaded server and an
asynchronous SMTP-based transport is often all that is
required). Therefore, web services platform developers
have not focused on performance optimisation to anything
like the extent of, say, CORBA-platform developers.

Secondly, web services-derived platforms have little
or no support for QoS specification and realisation. We
believe that such facilities will be increasingly demanded
as sophisticated e-Science applications such as those
outlined in the introduction start to exploit the potential of
service-oriented architectures. We also believe that a prime
cause of this deficiency is an over-reliance by web services
platforms on SOAP as a communications engine. Although
very flexible and general, SOAP clearly shows its
limitations when relied on exclusively:
• It is inappropriate for Grid applications involving

large-volume scientific datasets [Govindaraju,00]—
mainly due to its use of XML as an on-the-wire data
representation. This is highly demanding in terms of
bandwidth, memory and processing cycles (especially
compared to earlier standards like CORBA’s CDR).

• It is not as transparent from the perspective of the
application programmer as other application-level
protocols—programmers often have to explicitly build
and extract SOAP envelopes and message bodies and
perform manual marshaling and unmarshaling.

• Although it offers some flexibility in terms of support
for different interaction types (e.g., choice of request-
reply or one-way messages), it can never support the
comprehensive range of interaction types provided by
object-based middleware platforms (which covers a
significant subset of those listed in section 1).
The OGSA design nominally recognises the

limitations of exclusive reliance on SOAP, and
(theoretically, at least) leaves room for non-SOAP bindings
(e.g. using CORBA IIOP and, potentially, other bindings
that do have some support for QoS). However, OGSA does
not currently specify any particular framework whereby
such bindings can be integrated into the distributed

programming model, and it similarly does not provide any
framework for generic QoS specification/ enforcement.

Thirdly and finally, current web services platforms do
not include recent results from advanced middleware
research which is investigating highly configurable (and
run-time reconfigurable) reflective and component-based
middleware technologies (e.g., see the proceedings of the
Second International Workshop on Reflective and
Adaptive Middleware [RM,03]). A prime motivator for this
research is to facilitate the custom-building of middleware
platform instances that can be applied in a very wide range
of environments (e.g., from large-scale servers, to real-time
embedded systems, to mobile PDAs), and can support a
range of programming APIs (e.g. CORBA, or web
services, or APIs for media-streaming, or message-oriented
middleware). A prime, and highly successful, example of
such a platform is the open source JBoss application server
[Fleury,03]. The basic philosophy of advanced middleware
is to support configurability, extensibility and adaptability
as fundamental system properties. In particular, the
approach enables alternative policies (e.g. security policies,
replication policies, service (de)activation policies, priority-
assigned invocation paths, thread scheduling) and
components (e.g. protocols, buffer managers, loggers,
debuggers, demultiplexers) to be configured in or out at
deploy-time, and reconfigured at run-time (e.g. on the basis
of dynamically evolving conditions).

Overall, our view is that next generation Grid
middleware can and should leverage the results of the
wider middleware field as discussed above. In doing so, it
can retain key web services-derived characteristics (loose
coupling, XML-based data structuring, reliance only on
ubiquitous Internet standards) while additionally folding in
some of the key benefits of the wider field—in particular,
the availability of generic services, and scalability and
performance engineering know-how offered by ‘standard’
middleware; and the increased flexibility and
configurability promised by the advanced middleware
research.

3. OUR CURRENT RESEARCH
3.1 GRIDKIT

In this section we discuss our current activities in
pursuit of the above goals. Our work is subsumed under the
umbrella of an architecture called GRIDKIT. As illustrated
in figure 1, the aim of GRIDKIT is to provide support in
each of four ‘domains’ that we identify as key in
underlying the provision of Grid services. These domains
are as follows:
• Service binding. This area provides sophisticated

communication services beyond SOAP: i.e., support
for QoS management, and for different interaction

types such as those listed in section 1.
• Resource discovery. This provides service, and more

generally, resource, discovery services, allowing for
the use of multiple discovery technologies to maximise
the flexibility available to applications. Examples of
alternative technologies are SLP or UPnP for more
traditional service discovery, GRAM for CPU
discovery in a Grid context, and P2P protocols for
more general resource discovery.

• Resource management. This comprises both coarse-
grained distributed resource management as currently
provided by services such as GRAM, and fine-grained
local resource management (e.g. of channels, threads,
buffers etc) that is required to build end-to-end QoS.

• Grid security. This supports secure communication
between participating nodes orthogonally to the
interaction types in use.

Resource
Management

Grid Services

Resource
Discovery

Service
Binding

Grid
Security

Figure 1: The GRIDKIT Vision

These four domains of middleware functionality are
implemented in GRIDKIT as independent, horizontal,
frameworks each of which is highly configurable and
reconfigurable. As such, they are directly available to
application services, and can also be combined to provide
more complex middleware capabilities. For example,
service bindings can integrate with Grid security to produce
secure communication channels. In the remainder of this
paper, we examine in detail the service binding and
resource discovery frameworks (we do not discuss resource
management and security further in this paper).

3.2 The Ancestry of GRIDKIT
GRIDKIT is an instantiation of the generic OpenORB

middleware platform [Coulson,02], and hence follows the
philosophy of building systems using components (with the
OpenCOM component model), component frameworks and
reflection. In particular, the four domains discussed above
are each implemented in terms of (reflective) component
frameworks (CFs) that are configurable and dynamically
reconfigurable by means of ‘plug-in’ components.

The generic architecture of GRIDKIT is also strongly
influenced an OpenORB-based, web services-based,
mobile computing framework called ReMMoC [Grace,03].
ReMMoC provides inspiration and a code base for specific
aspects of GRIDKIT. In particular, it contributes a
prototype service binding CF.

ReMMoC was originally designed to tackle the
middleware heterogeneity problem inherent to the domain
of web services-based mobile computing. Typically,
mobile users encounter application services implemented
on different middleware standards as they move from one
location to another. For example, at one location, a jukebox
service may be implemented as a SOAP service and
advertised using UPnP; whereas at the next location the
same service may be implemented on a publish-subscribe
implementation and advertised using SLP. ReMMoC
addresses heterogeneity of this type, allowing mobile client
applications to be developed independently of both binding
styles and service discovery styles. Hence, these
applications are able to continue operating as the user
moves to new, unknown locations.

We believe that ReMMoC particularly recommends
itself as the basis of GRIDKIT because it demonstrates
how a range of interaction types can be abstracted using a
web services API, thus providing the basis of an
extensibility framework in which to accommodate the more
complex range of interaction types required by future Grid
applications. In addition, ReMMoC, thanks to its
OpenCOM base, has been shown [Grace,03] to be both
highly performant and to incur only a minimal memory
footprint (around 27K), making it deployable in almost any
system environment. Nevertheless, ReMMoC per se is
limited in its applicability to the Grid because i) it is only a
client side system ii) it does not consider the ‘depth’
dimension of integration with network services, and iii) it
does not consider resource management or security.

3.3 The GRIDKIT Architecture
GRIDKIT is built in terms of OpenCOM/ ReMMoC

derived CFs, the architecture of which is shown in figure 2.

CF receptacles
(exposable)

ICFMetaArchitecture
CF Service
Interfaces
(exposable
interfaces)

IMetaInterface
ILifeCycle

IConnections

OpenCOM
Framework

Lock
Interceptor IAccept local graph

Figure 2: The Component Framework Model

The CFs behave as standard OpenCOM components;
but, in addition, each implements the ICFMetaArchitecture
interface which provides operations to inspect and
dynamically reconfigure the CF’s internal structure
(maintained as a ‘graph’ of internal sub-components). To
ensure that dynamic changes to the framework are ‘valid’,
each CF exports a receptacle named IAccept; from here
different validation strategies can be plugged into the

framework so that once a change is made, the plug-in
checking strategy is executed, and if invalid the framework
rolls back to its previous state. By default, the local graph
is checked against a set of XML-based architectural
descriptions of valid component configurations.
Alternatively, more or less complex strategies can be
plugged in (e.g. architectural style rules [Moreira,01]).

Turning now to the wider picture, the subset of the
GRIDKIT architecture that deals with service binding and
resource discovery is illustrated in figure 3. This depicts a
three-layer architecture that is composed of: i) abstract
middleware, ii) abstract to concrete mappings, and iii)
concrete middleware. Each of these layers in turn consist of
multiple CFs. This renders the architecture inherently
configurable and extensible so that components
implementing specific functions can be plugged in when
and where required. In addition, applications requiring only
minimal middleware functionality need only utilise parts of
GRIDKIT. This is especially important for execution on
devices with limited resources e.g. mobile devices.

Abstraction

Concrete

Abstract to
concrete

Resource
discovery

Service
Binding

Grid
API Binding Discovery

Overlay
Network

Map

GRIDKIT

P2P
overlay

Multicast
tree

Figure 3: The GRIDKIT Architecture

The abstract middleware layer consists of a “Grid
Service API” CF that is built in terms of web services
abstractions. In particular, abstract service interactions are
described in terms of WSDL so that services can be
invoked irrespective of the interaction type underlying the
service. This is achieved by exploiting WSDL’s approach
of breaking interactions down into individual messages:
any conceivable service operation, from the user’s
perspective, can be described abstractly in terms of input or
output messages (e.g. an RPC-based service might be
described as an output message followed by an input
message, whereas a publish-subscribe-based service can be
described, from the perspective of the subscriber, as an
output message for the subscription followed by potentially
many subsequent asynchronously-received input messages
representing incoming publications).

Discovery (of both services and resources) also forms
part of the abstract middleware layer. Again, WSDL is
used to abstract over different modes of interaction with

service and resource discovery mechanisms. This is
relatively straightforward for service discovery protocols
(e.g. SLP and UPnP) because all of these tend to be based
on advertisement of service types with service attributes.

The abstract to concrete mapping layer then takes the
abstract information submitted through the abstract
middleware layer and maps it to the interfaces of the
currently exposed concrete middleware implementation(s)
in the layer below. This mapping is based on ReMMoC
principles, a detailed discussion of which can be found in
[Grace,03]. Unlike ReMMoC, the Grid API framework
allows multiple mapping components to be maintained in
order for different services to be simultaneously hosted,
each of which can use multiple service bindings. This was
not necessary in ReMMoC as it was exclusively a client-
side framework that did not itself support remotely
accessible services.

Finally, the concrete middleware layer is composed of
three CFs, organised in two layers. The top layer is
composed of CFs to support concrete service binding and
resource discovery. The Service Binding CF provides a set
of available interaction type implementations. These are
implemented as component personalities and plugged into
the framework. Multiple personalities can operate in
parallel to support the required level of persistence in
hosting services. That is, when a service is hosted over one
binding type it need not be shut down if an alternative
binding must be used by another service. The binding
framework exposes its network requirements to the
underlying overlay framework using the exposed receptacle
technique illustrated in figure 2.

The Discovery CF similarly allows multiple discovery
technologies to be plugged into the framework (e.g. SLP,
UDDI, Jini, P2P-based etc.) at any one time. Resource
discovery requests and advertisement of resources can be
executed in parallel over each of the plugged-in
personalities so that Grid applications can maximise the
number of resources that are found, find them more
quickly, and can distribute their resources to a greater
audience. The discovery framework utilises the underlying
overlay framework to enhance discovery, and we intend to
investigate the addition of alternative resource discovery
technologies (based, e.g., on peer-to-peer overlays) into the
framework.

Underpinning the Service Binding and Discovery
CFs, the role of the Overlay CF is to provide overlay
network services to the higher-level CFs: to route packets
through virtual networks that are tailored to support the
various service interaction types. Sophisticated
communication services e.g. data streaming, P2P resource
discovery and application-level multicast can be supported
by appropriate overlay configurations. As with the other
CFs, multiple overlay personalities can be plugged in.

Multiple service bindings can then operate over their
selected overlay. We anticipate that the nodes of the
(overlay) network will be composed of machines hosting
appropriate GRIDKIT CFs, which will allow autonomic
management of the overlay to support the application. That
is, the algorithms to maintain the required network
structures will be dynamically managed by communication
between the low-level component frameworks in each of
the nodes.

The inherent openness of GRIDKIT enables both
coarse and fine-grained dynamic reconfiguration. To
support application requirements, a new binding or
discovery plug-in can be configured; or similarly, the
implementation of an individual binding type can be
changed e.g. a change from SOAP to IIOP for a remote
method invocation plug-in. Furthermore, fine grained
changes, i.e. within the component personality, can be
made to better support QoS requirements; e.g. changing
media filters when the performance of the network
degrades.

4. CONCLUSIONS AND FUTURE WORK
We have argued that existing Grid middleware does

not provide the necessary level of support for complex Grid
applications such as distributed collaborative visualisation.
We believe that an open component-based platform, which
integrates middleware and (overlay) networking
functionality, is needed to support the sophisticated
communication requirements of applications of this type.
For this purpose, the service binding and resource
discovery architectures of GRIDKIT allow multiple
interaction and discovery types to be simultaneously hosted
over multiple overlay network configurations.

Our ReMMoC-derived GRIDKIT implementation
initially provided us with a base of three binding protocols
and two discovery technologies (consisting collectively of
35 OpenCOM components). We are currently in the
process of extending this with data streaming and OGSA-
DAI-based data sharing as additional bindings; and UDDI,
Jini and JXTA as additional resource discovery protocols.
Finally, we are wrapping an existing tree-based multicast
overlay [Mathy,01] as an initial overlay plug-in.

Future work is planned on two fronts: first we will
exercise and evaluate our frameworks and plug-ins by
using them to support a range of distributed visualisation
scenarios that have been developed at Oxford Brookes
University. Second, we plan to explore the self-
management of services and applications in GRIDKIT.
This will build on the inherent openness of the
(component-based) platform but will require additional CFs
that deal with areas such as monitoring, recovery strategy
selection, and recovery strategy deployment. We have
carried out initial explorations in this area [Blair,02], but

GRIDKIT will provide a challenging context for these
ideas.

5. REFERENCES
[Govindaraju,00] Govindaraju, M., Slominski, A., Chopella, V.,
Bramley, R., Gannon, D., “Requirements for and evaluation of
RMI protocols for Scientific Computing”, Proc. Supercomputing
(SC ’00), Dallas, Texas, Nov 2000.
[Axis,02] Apache Axis Project,
http://xml.apache.org/axis/index.html.
[Coulson,02] Coulson, G., Blair, G.S., Clark, M., Parlavantzas,
N., “The Design of a Highly Configurable and Reconfigurable
Middleware Platform”, ACM Distributed Computing Journal, Vol
15, No 2, pp 109-126, April 2002.
[Fleury,03] Fleury, M., Reverbel, F., “The JBoss Extensible
Server”, Proc. IFIP/ACM Middleware 2003, Rio de Janeiro,
Brazil, Springer Verlag LNCS, pp 344-354, June 2003.
[RM,03] The 2nd Workshop on Reflective and Adaptive
Middleware, IFIP/ACM Middleware 2003, Rio de Janeiro;
http://www.cs.wustl.edu/~corsaro/RM2003/index.html.
[Blair,02] Blair, G.S., Coulson, G., Blair, L., Duran-Limon, H.,
Grace, P., Moreira R., Parlavantzas, N., “Reflection, Self-
Awareness and Self-Healing in OpenORB”, Proc. ACM Sigsoft
Workshop on Self-Healing Systems (WOSS’02), Nov 02.
[Furmento,02] Furmento, N., Mayer, A., McGough, S.,
Newhouse, S., Field, T., Darlington, J., “ICENI: Optimisation of
Component Applications within a Grid Environment”, Parallel
Computing, Vol 28, No 12, pp1753-1772, 02.
[El-Sayed,03] El-Sayed, A., Roca, V., Mathy, L., “A Survey of
Proposals for an Alternative Group Communication Service”,
IEEE Network, Vol 17, No 1, pp46-51, Jan 03.
[Foster,01] Foster, I., Kesselman, C., Tuecke, S., “The Anatomy
of the Grid: Enabling Virtual Organizations, International Journal
of Supercomputer Applications, Vol 15, No 3, 2001.
[Grimshaw,99] Grimshaw, A., Ferrari, A., Knabe, F., Humphrey,
M., “Legion: An Operating System for Wide-Area Computing”,
IEEE Computer, Vol 32, No 5, pp 29-37, May 1999.
[OGSA,03] Tuecke, S. et al., Grid Service Specification, draft 3,
http://www.gridforum.org/ogsi-wg/drafts/GS_Spec_draft.pdf.
[VESC,03] e-Science Visualization, NeSC, Edinburgh, Jan 03,
http://umbriel.dcs.gla.ac.uk/NeSC/general/esi/events/130/worksho
p_report.pdf.
[Moreira,01] Moreira, R., Blair, G., Carrapatoso, G., “Reflective
Component-Based & Architecture Aware Framework to Manage
Architecture Composition”. Proc. 3rd International Symposium on
Distributed Objects & Applications, Rome, Italy, Sept, 2001.
[Mathy,01] Mathy, L., Roberto Canonico, R., Hutchison, D., “An
Overlay Tree Building Control Protocol”, Proc. Networked Group
Communication (NGC 2001), London, LNCS 2233, Crowcroft
and Hofmann (Eds), pp76-87, Nov 01.
[Grace,03] Grace, P., Blair, G.S., Samuel, S., “ReMMoC: A
Reflective Middleware to Support Mobile Client
Interoperability”, Proc. International Symposium of Distributed
Objects and Applications (DOA’03), Catania, Italy, November
2000.

