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ABSTRACT 
Significant progress has been made in the design and 
development of Grid middleware which, in its present form, is 
founded on service-oriented architecture and web services 
technologies. Nevertheless, Grid middleware is still severely 
limited in key areas. In this paper we discuss work that aims to 
address some of these limitations. First, we consider how ideas 
and principles from the wider middleware research community 
can usefully be applied in a Grid middleware context. Then we 
focus on our own current work on integration of the Grid 
middleware platform with an extensible set of interaction types 
and advanced network services, and on an architectural 
framework for Grid middleware internals. We believe that these 
areas, along with complexity management, will become 
increasingly important as sophisticated e-Science applications 
start to exploit the potential of service-oriented architecture-
based middleware.  
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1. INTRODUCTION 
Following initial offerings such as Legion 

[Grimshaw,99] and Globus 2 [Foster,01], the Open Grid 
Services Architecture (OGSA) [OGSA,03] has recently 
emerged as a ‘second generation’ distributed computing 
approach to Grid middleware that is taking Grid support 
forward from an era of ad-hoc platforms to a more 
architected approach built on service-orientation and web 
services technologies. This new approach promises a more 
unified and principled approach to the support of Grid 
applications. It augments generic web services standards by 
defining a specific abstract notion of ‘Grid service’; and 
also defines Grid-specific architectural elements such as: 
service factories and registries; naming and referencing 
conventions for service instances; support for stateful 
services; soft-state-based garbage collection of service 
instances; event notification from services; and version 
management.  

However, despite these advances, OGSA, and indeed 
the web services technologies on which it is based, are still 
deficient in many areas of distributed computing support 

which, we believe, are key to the successful hosting of 
large-scale, next generation, Grid applications. 

We are particularly concerned with applications that 
exhibit properties such as: high levels of heterogeneity in 
terms of both networking and end-systems; real-time 
interactive collaboration employing multiple media-types; 
large scale, complexity and dynamic (re-)configuration; 
QoS-sensitivity, and adaptability to changes in 
environmental conditions. An illustrative example of such 
an application is a world-wide collaborative visualization 
session involving large numbers of scientists who join and 
leave the session dynamically and are connected by a 
variety of access networks and end-systems (including 
wireless networks/PDAs), and involving multiple media 
such as visualization data, live sensor output, vector 
graphics and video [VESC,03].  

We contend that such applications fundamentally 
over-stretch the state-of-the-art in existing Grid support. 
More specifically, our analysis is that current platforms 
have three major areas of deficiency in terms of advanced 
application support: 

• Integration with advanced network services. One of 
the attractions of OGSA is its simple SOAP-based 
model of interaction. However, advanced applications 
often require more sophisticated communications 
services in terms of, for example, QoS management, 
and, especially, different ‘interaction types’ (e.g. RPC, 
asynchronous RPC, reliable/ unreliable messaging, 
publish-subscribe, tuple-space-based interaction, peer-
to-peer based interaction, media-streaming, reliable/ 
unreliable group interaction, workflow interaction, 
distributed voting or auction protocols, and various 
transactional styles); note that much of the low-level 
supporting research on interaction types is now 
subsumed under the topic of overlay networks [El-
Sayed,03]). 

• Architectural framework. OGSA focuses on 
interoperability through the use of ‘ubiquitous’ Web 
protocols and associated abstractions (e.g. WSDL). 
However, this focus on interoperability needs to be 



complemented with a strong internal platform 
architecture that supports the integration of diverse 
system elements in terms of both breadth (e.g. generic, 
‘horizontal’ distributed services such as persistence, 
visualization, conferencing) and depth (e.g. underlying 
‘vertical’ communication services in intimate contact 
with the network; and with other, end-system based, 
resources). 

• Complexity management. As Grid applications become 
increasingly large, complex, and long-lived, there 
emerges a strong need for their sophisticated 
management. It is becoming recognised that the scale 
and complexity of such systems demand a self-
managing or autonomic approach. Linking back to the 
previous two points, it is crucial that such self-
management is applicable to the architecture of the 
whole system including communication services. We 
argue that this implies an open and programmable 
approach to system construction. 

In our current research we are addressing these 
deficiencies through a pervasive component-based 
approach that integrates middleware and (overlay) 
networking functionality. Component technologies have 
already been adopted successfully in Grid research to 
promote structure and re-use at the application level (see, 
e.g., [Furmento,02]). But here we propose the use of 
component technology not only for applications but 
throughout the platform architecture in terms of both 
breadth and depth as outlined above. It is important to 
stress that we are not proposing the use of traditional 
heavyweight component technologies like Enterprise 
JavaBeans (EJB). Rather, a major aim of the research is to 
develop and apply a lightweight component model that 
imposes minimal overhead, and can be used to build even 
low-level, system-oriented, functionality. The component 
model should also be system and language independent, 
and API-neutral, so that it can be used to construct arbitrary 
application-level distributed programming environments as 
required (e.g. OGSA, web services, or, indeed, EJB). 

A particular goal is to apply lightweight component-
based technology to construct an extensible family of open 
and programmable overlay networks, thus providing an 
approach that is network-centric, offers a strong 
architecture for the system infrastructure, and facilitates 
self-management through the inherent openness of 
component-based structures [Blair,02]. This approach also 
promises other important benefits: i) a extensible range of 
interaction types, such as those listed above, can be made 
available and selected according to the application domain 
and/or context; and ii) it facilitates dynamic re-
configuration of communications (and other services) as 
context changes (e.g. to maintain a visualization session 
when an end user roams to a wireless network).  

To validate our approach and provide focus for 
practical experimentation we are using selected 
collaborative visualization-based applications and 
scenarios. Collaborative visualization is highly appropriate 
for this purpose because of its inherent properties as 
outlined above. It is also data and compute intensive which 
makes it an ideal case study for an infrastructure that 
aspires to manage both network and end-system resources 
in an integrated manner. 

In the remainder of this paper we first, in section 2, 
discuss opportunities for applying research results from the 
wider middleware research community to specifically Grid-
oriented middleware. This includes existing object-based 
middleware standards and products, and recent results from 
the advanced middleware research community. This work 
mainly contributes in the breadth dimension. Following 
this, section 3 discusses our research and results to date. 
Our direction here accommodates the breadth dimension 
but also opens up the depth dimension. Finally, section 4 
draws conclusions and indicates areas of planned future 
work. 

2. OPPORTUNITIES FOR APPLYING 
WIDER MIDDLEWARE RESEARCH 
RESULTS IN GRID MIDDLEWARE  

The implementation approach currently favoured by 
Grid middleware developers (e.g. OGSA) is to layer the 
Grid environment on top of existing web services 
platforms. A good example of such a platform is Apache 
Axis [Axis,02], which provides a Java-based environment 
for web service deployment and invocation, and offers 
sophisticated support for messaging in terms of SOAP’s 
extension headers, intermediaries, and multiple transport 
capability. Other examples of web services platforms are 
Sun’s ONE and IBM’s WebSphere.  

However, although these platforms are a useful 
starting point, they have significant limitations as a Grid 
middleware support infrastructure. Firstly, they are 
extremely limited, in comparison to object-based 
middleware platforms (e.g. RM-ODP and CORBA, and 
industry-developed platforms like Java RMI, Enterprise 
JavaBeans, DCOM, and the .NET remoting architecture) in 
the following areas: 
• provision of generic (horizontal, or breadth-oriented) 

services—for example, CORBA supports generic 
reusable services like fault tolerance, persistent state, 
automated logging, load-balancing, transactional 
object invocation, event distribution, and many others; 

• scalability and performance—for example, EJB and 
the CORBA Component Model have sophisticated 
support for the automated activation/ passivation of 



stateful services, and natively support services that 
span multiple machines/ networks; in addition 
performance engineering has been the subject of 
intensive research in the object-based middleware 
community over the last 10 years (see, e.g., 
[Coulson,02]).  

In contrast, horizontal services are conspicuously 
lacking in current Grid environments and there is great 
potential here for reuse from the wider field. And in terms 
of performance, the application focus of web services-
derived middleware has traditionally been on e-Commerce 
where dependability and security are far more important 
than performance (indeed, a single threaded server and an 
asynchronous SMTP-based transport is often all that is 
required). Therefore, web services platform developers 
have not focused on performance optimisation to anything 
like the extent of, say, CORBA-platform developers. 

Secondly, web services-derived platforms have little 
or no support for QoS specification and realisation. We 
believe that such facilities will be increasingly demanded 
as sophisticated e-Science applications such as those 
outlined in the introduction start to exploit the potential of 
service-oriented architectures. We also believe that a prime 
cause of this deficiency is an over-reliance by web services 
platforms on SOAP as a communications engine. Although 
very flexible and general, SOAP clearly shows its 
limitations when relied on exclusively: 
• It is inappropriate for Grid applications involving 

large-volume scientific datasets [Govindaraju,00]—
mainly due to its use of XML as an on-the-wire data 
representation. This is highly demanding in terms of 
bandwidth, memory and processing cycles (especially 
compared to earlier standards like CORBA’s CDR).  

• It is not as transparent from the perspective of the 
application programmer as other application-level 
protocols—programmers often have to explicitly build 
and extract SOAP envelopes and message bodies and 
perform manual marshaling and unmarshaling.  

• Although it offers some flexibility in terms of support 
for different interaction types (e.g., choice of request-
reply or one-way messages), it can never support the 
comprehensive range of interaction types provided by 
object-based middleware platforms (which covers a 
significant subset of those listed in section 1). 
The OGSA design nominally recognises the 

limitations of exclusive reliance on SOAP, and 
(theoretically, at least) leaves room for non-SOAP bindings 
(e.g. using CORBA IIOP and, potentially, other bindings 
that do have some support for QoS). However, OGSA does 
not currently specify any particular framework whereby 
such bindings can be integrated into the distributed 

programming model, and it similarly does not provide any 
framework for generic QoS specification/ enforcement.  

Thirdly and finally, current web services platforms do 
not include recent results from advanced middleware 
research which is investigating highly configurable (and 
run-time reconfigurable) reflective and component-based 
middleware technologies (e.g., see the proceedings of the 
Second International Workshop on Reflective and 
Adaptive Middleware [RM,03]). A prime motivator for this 
research is to facilitate the custom-building of middleware 
platform instances that can be applied in a very wide range 
of environments (e.g., from large-scale servers, to real-time 
embedded systems, to mobile PDAs), and can support a 
range of programming APIs (e.g. CORBA, or web 
services, or APIs for media-streaming, or message-oriented 
middleware). A prime, and highly successful, example of 
such a platform is the open source JBoss application server 
[Fleury,03]. The basic philosophy of advanced middleware 
is to support configurability, extensibility and adaptability 
as fundamental system properties. In particular, the 
approach enables alternative policies (e.g. security policies, 
replication policies, service (de)activation policies, priority-
assigned invocation paths, thread scheduling) and 
components (e.g. protocols, buffer managers, loggers, 
debuggers, demultiplexers) to be configured in or out at 
deploy-time, and reconfigured at run-time (e.g. on the basis 
of dynamically evolving conditions). 

Overall, our view is that next generation Grid 
middleware can and should leverage the results of the 
wider middleware field as discussed above. In doing so, it 
can retain key web services-derived characteristics (loose 
coupling, XML-based data structuring, reliance only on 
ubiquitous Internet standards) while additionally folding in 
some of the key benefits of the wider field—in particular, 
the availability of generic services, and scalability and 
performance engineering know-how offered by ‘standard’ 
middleware; and the increased flexibility and 
configurability promised by the advanced middleware 
research.  

3. OUR CURRENT RESEARCH 
3.1 GRIDKIT 

In this section we discuss our current activities in 
pursuit of the above goals. Our work is subsumed under the 
umbrella of an architecture called GRIDKIT. As illustrated 
in figure 1, the aim of GRIDKIT is to provide support in 
each of four ‘domains’ that we identify as key in 
underlying the provision of Grid services. These domains 
are as follows: 
• Service binding. This area provides sophisticated 

communication services beyond SOAP: i.e., support 
for QoS management, and for different interaction 



types such as those listed in section 1.  
• Resource discovery. This provides service, and more 

generally, resource, discovery services, allowing for 
the use of multiple discovery technologies to maximise 
the flexibility available to applications. Examples of 
alternative technologies are SLP or UPnP for more 
traditional service discovery, GRAM for CPU 
discovery in a Grid context, and P2P protocols for 
more general resource discovery. 

• Resource management. This comprises both coarse-
grained distributed resource management as currently 
provided by services such as GRAM, and fine-grained 
local resource management (e.g. of channels, threads, 
buffers etc) that is required to build end-to-end QoS. 

• Grid security. This supports secure communication 
between participating nodes orthogonally to the 
interaction types in use.  

Resource 
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Resource 
Discovery 

Service 
Binding 

Grid 
Security 

 
Figure 1: The GRIDKIT Vision 

These four domains of middleware functionality are 
implemented in GRIDKIT as independent, horizontal, 
frameworks each of which is highly configurable and 
reconfigurable. As such, they are directly available to 
application services, and can also be combined to provide 
more complex middleware capabilities. For example, 
service bindings can integrate with Grid security to produce 
secure communication channels. In the remainder of this 
paper, we examine in detail the service binding and 
resource discovery frameworks (we do not discuss resource 
management and security further in this paper).  

3.2 The Ancestry of GRIDKIT 
GRIDKIT is an instantiation of the generic OpenORB 

middleware platform [Coulson,02], and hence follows the 
philosophy of building systems using components (with the 
OpenCOM component model), component frameworks and 
reflection. In particular, the four domains discussed above 
are each implemented in terms of (reflective) component 
frameworks (CFs) that are configurable and dynamically 
reconfigurable by means of ‘plug-in’ components.  

The generic architecture of GRIDKIT is also strongly 
influenced an OpenORB-based, web services-based, 
mobile computing framework called ReMMoC [Grace,03]. 
ReMMoC provides inspiration and a code base for specific 
aspects of GRIDKIT. In particular, it contributes a 
prototype service binding CF.  

ReMMoC was originally designed to tackle the 
middleware heterogeneity problem inherent to the domain 
of web services-based mobile computing. Typically, 
mobile users encounter application services implemented 
on different middleware standards as they move from one 
location to another. For example, at one location, a jukebox 
service may be implemented as a SOAP service and 
advertised using UPnP; whereas at the next location the 
same service may be implemented on a publish-subscribe 
implementation and advertised using SLP. ReMMoC 
addresses heterogeneity of this type, allowing mobile client 
applications to be developed independently of both binding 
styles and service discovery styles. Hence, these 
applications are able to continue operating as the user 
moves to new, unknown locations. 

We believe that ReMMoC particularly recommends 
itself as the basis of GRIDKIT because it demonstrates 
how a range of interaction types can be abstracted using a 
web services API, thus providing the basis of an 
extensibility framework in which to accommodate the more 
complex range of interaction types required by future Grid 
applications. In addition, ReMMoC, thanks to its 
OpenCOM base, has been shown [Grace,03] to be both 
highly performant and to incur only a minimal memory 
footprint (around 27K), making it deployable in almost any 
system environment. Nevertheless, ReMMoC per se is 
limited in its applicability to the Grid because i) it is only a 
client side system ii) it does not consider the ‘depth’ 
dimension of integration with network services, and iii) it 
does not consider resource management or security. 

3.3 The GRIDKIT Architecture 
GRIDKIT is built in terms of OpenCOM/ ReMMoC 

derived CFs, the architecture of which is shown in figure 2.  
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Figure 2: The Component Framework Model 

The CFs behave as standard OpenCOM components; 
but, in addition, each implements the ICFMetaArchitecture 
interface which provides operations to inspect and 
dynamically reconfigure the CF’s internal structure 
(maintained as a ‘graph’ of internal sub-components). To 
ensure that dynamic changes to the framework are ‘valid’, 
each CF exports a receptacle named IAccept; from here 
different validation strategies can be plugged into the 



framework so that once a change is made, the plug-in 
checking strategy is executed, and if invalid the framework 
rolls back to its previous state. By default, the local graph 
is checked against a set of XML-based architectural 
descriptions of valid component configurations. 
Alternatively, more or less complex strategies can be 
plugged in (e.g. architectural style rules [Moreira,01]). 

Turning now to the wider picture, the subset of the 
GRIDKIT architecture that deals with service binding and 
resource discovery is illustrated in figure 3. This depicts a 
three-layer architecture that is composed of: i) abstract 
middleware, ii) abstract to concrete mappings, and iii) 
concrete middleware. Each of these layers in turn consist of 
multiple CFs. This renders the architecture inherently 
configurable and extensible so that components 
implementing specific functions can be plugged in when 
and where required. In addition, applications requiring only 
minimal middleware functionality need only utilise parts of 
GRIDKIT. This is especially important for execution on 
devices with limited resources e.g. mobile devices. 
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Figure 3: The GRIDKIT Architecture 

The abstract middleware layer consists of a “Grid 
Service API” CF that is built in terms of web services 
abstractions. In particular, abstract service interactions are 
described in terms of WSDL so that services can be 
invoked irrespective of the interaction type underlying the 
service. This is achieved by exploiting WSDL’s approach 
of breaking interactions down into individual messages: 
any conceivable service operation, from the user’s 
perspective, can be described abstractly in terms of input or 
output messages (e.g. an RPC-based service might be 
described as an output message followed by an input 
message, whereas a publish-subscribe-based service can be 
described, from the perspective of the subscriber, as an 
output message for the subscription followed by potentially 
many subsequent asynchronously-received input messages 
representing incoming publications).  

Discovery (of both services and resources) also forms 
part of the abstract middleware layer. Again, WSDL is 
used to abstract over different modes of interaction with 

service and resource discovery mechanisms. This is 
relatively straightforward for service discovery protocols 
(e.g. SLP and UPnP) because all of these tend to be based 
on advertisement of service types with service attributes.  

The abstract to concrete mapping layer then takes the 
abstract information submitted through the abstract 
middleware layer and maps it to the interfaces of the 
currently exposed concrete middleware implementation(s) 
in the layer below. This mapping is based on ReMMoC 
principles, a detailed discussion of which can be found in 
[Grace,03]. Unlike ReMMoC, the Grid API framework 
allows multiple mapping components to be maintained in 
order for different services to be simultaneously hosted, 
each of which can use multiple service bindings. This was 
not necessary in ReMMoC as it was exclusively a client-
side framework that did not itself support remotely 
accessible services. 

Finally, the concrete middleware layer is composed of 
three CFs, organised in two layers. The top layer is 
composed of CFs to support concrete service binding and 
resource discovery. The Service Binding CF provides a set 
of available interaction type implementations. These are 
implemented as component personalities and plugged into 
the framework. Multiple personalities can operate in 
parallel to support the required level of persistence in 
hosting services. That is, when a service is hosted over one 
binding type it need not be shut down if an alternative 
binding must be used by another service. The binding 
framework exposes its network requirements to the 
underlying overlay framework using the exposed receptacle 
technique illustrated in figure 2. 

The Discovery CF similarly allows multiple discovery 
technologies to be plugged into the framework (e.g. SLP, 
UDDI, Jini, P2P-based etc.) at any one time. Resource 
discovery requests and advertisement of resources can be 
executed in parallel over each of the plugged-in 
personalities so that Grid applications can maximise the 
number of resources that are found, find them more 
quickly, and can distribute their resources to a greater 
audience. The discovery framework utilises the underlying 
overlay framework to enhance discovery, and we intend to 
investigate the addition of alternative resource discovery 
technologies (based, e.g., on peer-to-peer overlays) into the 
framework. 

Underpinning the Service Binding and Discovery 
CFs, the role of the Overlay CF is to provide overlay 
network services to the higher-level CFs: to route packets 
through virtual networks that are tailored to support the 
various service interaction types. Sophisticated 
communication services e.g. data streaming, P2P resource 
discovery and application-level multicast can be supported 
by appropriate overlay configurations. As with the other 
CFs, multiple overlay personalities can be plugged in. 



Multiple service bindings can then operate over their 
selected overlay. We anticipate that the nodes of the 
(overlay) network will be composed of machines hosting 
appropriate GRIDKIT CFs, which will allow autonomic 
management of the overlay to support the application. That 
is, the algorithms to maintain the required network 
structures will be dynamically managed by communication 
between the low-level component frameworks in each of 
the nodes. 

The inherent openness of GRIDKIT enables both 
coarse and fine-grained dynamic reconfiguration. To 
support application requirements, a new binding or 
discovery plug-in can be configured; or similarly, the 
implementation of an individual binding type can be 
changed e.g. a change from SOAP to IIOP for a remote 
method invocation plug-in. Furthermore, fine grained 
changes, i.e. within the component personality, can be 
made to better support QoS requirements; e.g. changing 
media filters when the performance of the network 
degrades. 

4. CONCLUSIONS AND FUTURE WORK 
We have argued that existing Grid middleware does 

not provide the necessary level of support for complex Grid 
applications such as distributed collaborative visualisation. 
We believe that an open component-based platform, which 
integrates middleware and (overlay) networking 
functionality, is needed to support the sophisticated 
communication requirements of applications of this type. 
For this purpose, the service binding and resource 
discovery architectures of GRIDKIT allow multiple 
interaction and discovery types to be simultaneously hosted 
over multiple overlay network configurations.  

Our ReMMoC-derived GRIDKIT implementation 
initially provided us with a base of three binding protocols 
and two discovery technologies (consisting collectively of 
35 OpenCOM components). We are currently in the 
process of extending this with data streaming and OGSA-
DAI-based data sharing as additional bindings; and UDDI, 
Jini and JXTA as additional resource discovery protocols. 
Finally, we are wrapping an existing tree-based multicast 
overlay [Mathy,01] as an initial overlay plug-in. 

Future work is planned on two fronts: first we will 
exercise and evaluate our frameworks and plug-ins by 
using them to support a range of distributed visualisation 
scenarios that have been developed at Oxford Brookes 
University. Second, we plan to explore the self-
management of services and applications in GRIDKIT. 
This will build on the inherent openness of the 
(component-based) platform but will require additional CFs 
that deal with areas such as monitoring, recovery strategy 
selection, and recovery strategy deployment. We have 
carried out initial explorations in this area [Blair,02], but 

GRIDKIT will provide a challenging context for these 
ideas. 

5. REFERENCES 
[Govindaraju,00] Govindaraju, M., Slominski, A., Chopella, V., 
Bramley, R., Gannon, D., “Requirements for and evaluation of 
RMI protocols for Scientific Computing”, Proc. Supercomputing 
(SC ’00), Dallas, Texas, Nov 2000.  
[Axis,02] Apache Axis Project, 
http://xml.apache.org/axis/index.html.  
[Coulson,02] Coulson, G., Blair, G.S., Clark, M., Parlavantzas, 
N., “The Design of a Highly Configurable and Reconfigurable 
Middleware Platform”, ACM Distributed Computing Journal, Vol 
15, No 2, pp 109-126, April 2002.  
[Fleury,03] Fleury, M., Reverbel, F., “The JBoss Extensible 
Server”, Proc. IFIP/ACM Middleware 2003, Rio de Janeiro, 
Brazil, Springer Verlag LNCS, pp 344-354, June 2003.  
[RM,03] The 2nd Workshop on Reflective and Adaptive 
Middleware, IFIP/ACM Middleware 2003, Rio de Janeiro; 
http://www.cs.wustl.edu/~corsaro/RM2003/index.html.  
[Blair,02] Blair, G.S., Coulson, G., Blair, L., Duran-Limon, H., 
Grace, P., Moreira R., Parlavantzas, N., “Reflection, Self-
Awareness and Self-Healing in OpenORB”, Proc. ACM Sigsoft 
Workshop on Self-Healing Systems (WOSS’02), Nov 02.  
[Furmento,02] Furmento, N., Mayer, A., McGough, S., 
Newhouse, S., Field, T., Darlington, J., “ICENI: Optimisation of 
Component Applications within a Grid Environment”, Parallel 
Computing, Vol 28, No 12, pp1753-1772, 02.  
[El-Sayed,03] El-Sayed, A., Roca, V., Mathy, L., “A Survey of 
Proposals for an Alternative Group Communication Service”, 
IEEE Network, Vol 17, No 1, pp46-51, Jan 03.  
[Foster,01] Foster, I., Kesselman, C., Tuecke, S., “The Anatomy 
of the Grid: Enabling Virtual Organizations, International Journal 
of Supercomputer Applications, Vol 15, No 3, 2001. 
[Grimshaw,99] Grimshaw, A., Ferrari, A., Knabe, F., Humphrey, 
M., “Legion: An Operating System for Wide-Area Computing”, 
IEEE Computer, Vol 32, No 5, pp 29-37, May 1999. 
[OGSA,03] Tuecke, S. et al., Grid Service Specification, draft 3, 
http://www.gridforum.org/ogsi-wg/drafts/GS_Spec_draft.pdf.  
[VESC,03] e-Science Visualization, NeSC, Edinburgh, Jan 03, 
http://umbriel.dcs.gla.ac.uk/NeSC/general/esi/events/130/worksho
p_report.pdf. 
[Moreira,01]  Moreira, R., Blair, G., Carrapatoso, G., “Reflective 
Component-Based & Architecture Aware Framework to Manage 
Architecture Composition”. Proc. 3rd International Symposium on 
Distributed Objects & Applications, Rome, Italy, Sept, 2001. 
[Mathy,01] Mathy, L., Roberto Canonico, R., Hutchison, D., “An 
Overlay Tree Building Control Protocol”, Proc. Networked Group 
Communication (NGC 2001), London, LNCS 2233, Crowcroft 
and Hofmann (Eds), pp76-87, Nov 01.  
[Grace,03] Grace, P., Blair, G.S., Samuel, S., “ReMMoC: A 
Reflective Middleware to Support Mobile Client 
Interoperability”, Proc. International Symposium of Distributed 
Objects and Applications (DOA’03), Catania, Italy, November 
2000. 



 


