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Abstract

Programmable networks allow third parties to reprogram networking devices. By open-
ing up the execution environment of routers, firewalls, gateways, etc., users and service
providers can adapt the behavior of these devices to meet their own specific needs. Pro-
grammable networks are therefore an interesting technology to build adaptive networks
and to support the increasing evolution of networking software.

At the same time, it can be perceived that many distributed applications impose
stringent availability and performance requirements on the employed network infras-
tructure, among others to meet increased user expectations. Interrupting network com-
munication to update or to customize the network software on programmable network
devices hence may have extensive consequences. This dissertation, therefore, is targeted
at supporting the reconfiguration of network software dynamically – that is, without
temporarily shutting down (parts of) the network.

Whether or not such dynamic reconfigurations are beneficial depends very much on
the effectiveness and efficiency of the reconfiguration process. Besides, implementing a
correct reconfiguration that causes limited overhead can be very complex and error-
prone (hence compromising the benefit of a dynamic reconfiguration). We argue that
specific reconfiguration support is needed, therefore, which (1) conducts the effective
and efficient reconfiguration of network software, and (2) conceals the complexity of
these reconfigurations from users or service provides who initiate the actual reconfigu-
rations.

This dissertation proposes the NeCoMan (Network reConfiguration Management)
middleware as reconfiguration support for programmable networks. In short, this mid-
dleware coordinates the runtime addition, replacement, and removal of both local and
distributed network services among out-of-band active nodes. The novelty of this mid-
dleware is in its ability to tailor the reconfiguration process. To accomplish this, the
NeCoMan middleware includes various reconfiguration algorithms as well as an exten-
sive set of customizations to these algorithms. This enables NeCoMan to customize the
reconfiguration process starting from (1) a declarative description of the recomposition
that must be executed and (2) a specification of the network service characteristics and
the reconfiguration semantics.

To conclude, we summarize the key contributions of this dissertation. Besides
proposing a middleware to reconfigure out-of-band active nodes and validating this
middleware by a number of reconfigurations, we present an extensive analysis on how
to coordinate local and distributed out-of-band compositional adaptations. In addi-
tion, this dissertation proposes to make change management support customizable.
In contrast to existing change management support (which typically conforms to the
black-box philosophy by encapsulating a single and fixed reconfiguration algorithm)
NeCoMan tailors the employed reconfiguration algorithm to exploit the network ser-
vice characteristics and the reconfiguration semantics.



Voorwoord – Preface

Hoewel vaak onzichtbaar zijn computernetwerken alomtegenwoordig in ons dage-
lijkse leven. Het WWW, digitale TV en IP-telefonie, zijn slechts enkele toepas-
singen waarvoor een netwerkinfrastructuur onontbeerlijk is. Bovendien leggen vele
van deze toepassingen strenge beschikbaarheids- en performantievereisten op aan
deze netwerkinfrastructuur, onder andere als gevolg van toenemende gebruikersver-
wachtingen. Het onderbreken van de netwerkcommunicatie om de software van de
gebruikte netwerkinfrastructuur bij te werken of aan te passen kan bijgevolg ver-
strekkende gevolgen hebben. Dit proefschrift onderzoekt daarom de dynamische
herconfiguratie van netwerk-software – dat wil zeggen, de uitvoering van herconfi-
guraties zonder tijdelijk de werking van (een deel van) de netwerkinfrastructuur te
onderbreken.

Bij het begin van dit proefschrift wil ik iedereen bedanken die (zowel op profes-
sioneel als op persoonlijk vlak) bijgedragen heeft tot de realisatie van dit werk. In
de eerste plaats bedankt ik mijn promotoren, Prof. Pierre Verbaeten en Prof. Tom
Holvoet, om mij de kans te geven dit onderzoek tot een goed einde te brengen. Hun
kritische geest heeft me steeds gestimuleerd om te trachten het beste van mezelf te
geven. Daarnaast wil ik hen en de andere leden van de begeleidingscommissie, Prof.
Eric Steegmans en Prof. Emmanuel Van Lil, van harte bedanken voor het kritisch
nalezen van deze tekst. Ook de voorzitter en de leden van de doctoraatsjury, Prof.
Guido De Roeck, Prof. Wouter Joosen en Prof. Geoff Coulson wil ik langs deze weg
bedanken. Prof. Geoff Coulson, thank you very much for kindly accepting to join
the jury.

Onderzoek doe je zelden alleen. Ik wil dan ook de collega’s van de DistriNet
onderzoeksgroep bedanken voor de fijne samenwerking. In het bijzonder bedank
ik Sam Michiels, Lieven Desmet, Alexander Helleboogh en Eddy Truyen van harte
voor de vele vruchtbare discussies. Ook mijn (vroegere en huidige) collega’s in de
netwerkinggroep mag ik hierbij zeker niet vergeten. Frank, Tom, Thomas, Bart,
Nelson, Klaas en Wouter, bedankt voor de aangename en leerrijke werkomgeving.

Werken op het departement computerwetenschappen (en binnen DistriNet in
het bijzonder) is sowieso een uitzonderlijke ervaring. Alle mensen opsommen die
mee voor deze unieke sfeer zorgden, is onbegonnen werk. Toch wil ik (op het risico
om iemand te vergeten) een aantal mensen expliciet bedanken. Yves “mijn auto
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heeft weer problemen” Younan, Frans “wanneer spelen we nog eens een wolvenspel”
Sanen, Thomas “ik ben een beetje asociaal” Delaet, Jan “FY” Smans, Kurt “tries-
tig gezichtje” Schelfthout, Alexander “witte vw-power” Helleboogh, Bart “da’s toch
simpel” Van Eylen, Peter “heeeeeuh” Rigole, Marko “alma” van Dooren, Elke “pan-
nenkoekenkoffie” Steegmans, Yves “magic” Vandewoude, Bart “triatlon” De Win,
Bart “de office cd’s liggen onderaan de kast” Swennen en Jean “pc met of zonder
besturingssysteem” Huens: bedankt allemaal voor die onvergetelijke jaren.

Verder wil ik ook mijn vrienden buiten cw bedanken. Bedankt voor de ontspan-
nende surf- en skivakanties, klimmomenten, de avonden (en nachten) aan de toog.
En vooral, bedankt voor jullie geduld, zeker het laatste jaar. Ik beloof dat ik nu
terug meer tijd ga hebben voor jullie. Hou de agenda’s al maar klaar!

Tot slot wil ik de mensen die het dichtst bij mij staan nog even expliciet in de
kijker zetten. Bedankt, Raf en Lutgarde, voor al jullie aanmoedigingen. Bedankt,
ma en pa, voor jullie onvoorwaardelijke steun. Bedankt, bomma en peter, voor de
prachtige momenten die Steven en ik bij jullie hebben beleefd. Bedankt, Steven,
voor de geweldige broer die je bent. Bedankt, Ellen, voor alles en zoveel meer ...

Nico Janssens, december 2006.
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Chapter 1

Introduction

Although often invisible, computer networks have become ubiquitous in our daily
life. The world wide web, on-line gaming, instant messaging, IP telephony and dig-
ital TV are only a few applications that highly depend on networked computer sys-
tems. At the same time, many distributed applications nowadays impose stringent
availability and performance requirements on the employed network infrastructure,
among others to meet increased user expectations. Interrupting network communi-
cation to update or to customize the network software on PC’s, routers, gateways
or other networking devices hence may have extensive consequences. This disser-
tation, therefore, is targeted at supporting the reconfiguration of network software
dynamically – that is, without temporarily shutting down (parts of) the network.

To familiarize the reader with this research challenge, we start this introduction
by exploring the benefits of dynamic software reconfiguration in computer networks.
Subsequently, we discuss the pre-conditions that must be fulfilled for such dynamic
reconfigurations to be beneficial. Starting from this problem statement, we explain
the goal of this dissertation. Finally, we give a brief overview of the next chapters.

Note that we deliberately do not define all terminology used within this introduc-
tion. Most of the terms will be treated explicitly in Chapter 2.

1.1 Dynamic software reconfiguration in computer
networks

Dynamic software reconfiguration has been subject of research since the mid 1980’s.
The interest in this topic was derived from an increasing need to support change in
long-lived and highly-available distributed systems – such as banking applications,
database servers, and telecommunication switches. These systems often require
updates in their software over time to fix bugs, to add new features, or to optimize
performance. Because long downtimes typically violate the stringent performance

1



2 Introduction

and availability requirements these systems must satisfy, they cannot be taken off-
line to accommodate change. The only option is to reconfigure them dynamically
– that is, while they continue to operate.

Since the mid 1990’s, part of the networking community is exploring the benefit
that can be gained through dynamic software reconfiguration as well. This evolution
coincides with two ongoing trends in network research and development. On the one
hand, one can observe a shift towards higher network programmability. At the same
time, an increasing interest emerges – both by academia and network industry – for
computer networks to conceal dynamic and heterogeneous network characteristics,
and to support increasing network software evolution. Let us explain this in more
detail.

Network programmability

Traditionally, the key purpose of computer networks, such as today’s Internet, is
to deliver messages from one endpoint to another. Because distributed systems are
only as effective as the network they run on, the main interest of network developers
is to scale up the network’s availability and performance. For a long time, this
concern has been satisfied by keeping networks as simple as possible: the Internet’s
network functions, for instance, have been limited largely to routing, congestion
control and simple QoS support [83, 112, 25]. Additionally, these network functions
are typically abstracted away from end-users and applications. Case in point are
the intermediate nodes (such as routers and switches) in present day networks,
which are (mostly) closed vertically integrated systems whose functions are tightly
programmed by the vendor into the embedded software and hardware.

On the one hand, this design principle is extremely powerful because it separates
distributed applications from much of the complexity of the underlying communi-
cation system. At the same time, however, it constrains some of these applications
because the detailed knowledge of the underlying network cannot be exploited to
enhance performance [12]. For that reason, considerable interest has raised over the
past decade to push extra functionality inside the network in an effort to provide
better services in a cost-effective way. Examples include the transport-level support
for wireless links of snoop-TCP [16], a network implementation of reliable multi-
cast with congestion control [119], and network support for preserving the quality
of MPEG video in the face of congestion [18]. Other more familiar examples of
network services that require computations within the network include RSVP [24],
Mobile IP [107], Web caches [52] and firewalls [116].

Since the mid 1990’s, various initiatives seek to support this paradigm shift
towards higher levels of network-internal computation by opening up the network
infrastructure and increasing its programmability [28]. By providing support to cus-
tomize the network software of both intermediate nodes and endpoints, the network
as a whole becomes a fully programmable environment. In this manner, the entire
network can be customized to improve its efficiency [83]. Similar to distributed
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systems, at least two classes of programmable computer networks can benefit from
accomplishing these software customizations dynamically. These include (1) adap-
tive networks that aim to conceal dynamic and heterogeneous network characteris-
tics, and (2) networks that need to support increasing network software evolution
without temporarily being taken off-line.

Adaptive networks

An increasing demand for networked consumer systems and devices (among other
reasons) is currently transforming computer networks into dynamic and heteroge-
neous environments. End-users desire transparent networking of their mobile and
embedded devices – such as sensors, mobile phones, PDAs and Pocket/Handheld
PCs, digital TV set-top boxes, laptops and game consoles – to provide entertain-
ment, information, and communication [45]. These devices inherently differ in avail-
able memory, processing and energy resources. Additionally, they employ various
transmission technologies (such as IrDA, Bluetooth, 802.11 Wi-Fi, Wireless 3G, and
wired 10/100 Ethernet), each with different and dynamic bandwidth, latency, and
error characteristics.

The heterogeneous and dynamic nature of these networks is an important hur-
dle that must be overcome to seamlessly interconnect these devices – that is, both
among themselves and with the required (internet) servers. For example, intercon-
necting end-user devices typically involves diverse transmission technologies that
are characterized with different and dynamic bandwidth characteristics (e.g. 2.4
kbps - 16 Mbps for IrDA, 1 Mbps - 2 Mbps for Bluetooth, 11 Mbps - 54 Mbps
for 802.11b/g Wi-Fi, etc. [1]). These differences, combined with the fact that the
nodes along a communication path can also possess very different and dynamic ca-
pabilities (most true for the end-devices) can produce unsatisfactory performance
for network-oblivious applications [49].

In addition to these network-oblivious applications, many existing protocols do
not perform well either in such heterogeneous and dynamic networks. These proto-
cols trade some loss in efficiency for the ability to deal with increased heterogeneity
[88]. Case in point is the transmission control protocol (TCP), which is developed
for wired networks that experience little transmission errors [111]. When employed
in error-prone wireless networks, TCP exhibits poor performance because it inter-
prets all perceived packet losses as caused by congestion. TCP thus incorrectly
reduces its congestion window in case of packet loss due to wireless transmission er-
rors. This causes a substantial degradation of performance in terms of throughput,
even though sufficient bandwidth might be available [60].

A substantial amount of research effort targets to conceal dynamic and het-
erogeneous network characteristics by developing adaptive network support, which
dynamically adapts the network software based on perceived changes inside the
network [48, 49, 42, 88, 98, 99, 30, 133, 18, 96, 63]. Fu et al., for instance, present
support to reduce performance degradation of network-oblivious applications by dy-



4 Introduction

namic deployment of compression components in the face of low-bandwidth network
conditions [48, 49]. Marcus and Feldmeier, for their part, have developed a number
of “protocol boosters” to hide heterogeneous and dynamic network characteristics
from existing protocols such as TCP [42, 88]. For both approaches, the employed
network customizations are only effective under specific network conditions, and are
therefore only applied when these conditions are fulfilled.

Besides, network industry as well is exploring the benefit of adaptive networks.
Cisco Systems’ r© vision on “intelligent networking”, for instance, targets to enable a
network to adapt on its own to its environment, with minimal operator intervention
[4, 17]. Besides, both Cisco Systems r© and Check Point Software Technologies r© are
exploring adaptive network support to cope with new security threats [53, 5, 6].

Evolutionary changes in network software

In addition to dynamic and heterogeneous network characteristics, computer net-
works are becoming liable to evolutionary changes as well. The reason for this is
twofold.

First, the pace of evolution in communication protocol specifications is increasing
noticeably. The Internet Engineering Task Force (IETF), for example, has proposed
and standardized more new protocols over the past five years than in the previous
fifteen [125]. Additionally, some existing protocols have undergone various revisions
over time to include extra functionality. Case in point are a number of RFCs1 that
discuss several extensions to TCP for improving the protocol’s efficiency when oper-
ating over networks with specific characteristics [46, 64, 89]. This growing evolution
of network communication protocols, in general, derives from the increasing rate in
which network technologies and application requirements are currently changing.
As long as existing protocols do not perform well in new circumstances, the pace of
evolution in communication protocol specifications most likely will not slow down.

Second, increasing the level of network programmability inherently makes net-
work software more liable to evolution. When pushing application specific function-
ality into the network software, for instance, the latter indirectly becomes exposed to
changes that apply to the application software. In addition, because programmable
networks allow third party actors to participate in the development of future net-
work services, they enable a free-market approach to protocol and network software
design. Consequently, protocol and network software designs can compete econom-
ically in the marketplace, rather than politically in a standards committee [42]. As
for any other business, third party vendors therefore must be able to rapidly ad-
dress changing stakeholder requirements, new market demands, etc. in order to be
competitive in this new market.

This increasing demand to support evolutionary changes, however, conflicts with
the stringent performance and availability requirements that most networks must

1The Request for Comments (RFC) document series is a set of technical and organizational
notes about the Internet [2].
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satisfy. Because computer networks are at the heart of all distributed systems,
taking network nodes off-line to carry out (evolutionary) changes is difficult to co-
ordinate and may have extensive consequences. Similar to distributed systems,
computer networks may benefit from performing such adaptations while they con-
tinue to operate, so as to mitigate the costs and risks associated with (increasing)
network software evolution.

By increasing network programmability, network developers are facing
new challenges. These include the ability to accommodate changing cir-
cumstances that can be initiated by both network internal events (such
as dynamic network characteristics) and network external events (such
as rapid network software evolution). Similar to distributed systems,
dynamic software reconfiguration is an enabling technology for pro-
grammable networks to address both types of dynamism without tem-
porarily taking part of the network off-line.

1.2 Problem statement

Whether or not dynamic reconfiguration of network software is beneficial depends
very much on the effectiveness and efficiency of the reconfiguration process. In gen-
eral, dynamic software reconfiguration (obviously) is only beneficial when the costs
and risks it introduces do not outweigh those associated with shutting down and
restarting the affected system. This pre-condition applies in particular to computer
networks, since a dynamic reconfiguration of network software may cause disrup-
tions, failures or inconsistencies that can be more harmful to the network than
accomplishing the reconfiguration off-line.

Besides, implementing a correct reconfiguration that causes limited overhead
can be very complex and error-prone (hence compromising the benefit of such a
dynamic reconfiguration). This is especially true when the network administrator
(who initiates an actual reconfiguration) must coordinate the reconfiguration him-
self/herself. We argue that specific reconfiguration support is needed, therefore,
which (1) conducts the effective and efficient reconfiguration of network software,
and (2) conceals the complexity of these reconfigurations from the network admin-
istrator.

1.3 Goal

Starting from this problem statement, we present the NeCoMan (Network reCon-
figuration Management) middleware [65, 66, 70]. This middleware operates on top
of programmable network nodes, and coordinates the runtime addition, replace-
ment, and removal of both local and distributed network services. As we further
explain in more detail in the next chapter, this middleware must fulfill the following
requirements:
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• Correct reconfigurations. To meet the requirement for effectiveness, NeCo-
Man must protect the network from failing because of the reconfiguration
process. Stated differently, NeCoMan must conduct correct reconfigurations.

• Limited reconfiguration overhead. To meet the requirement for efficiency,
NeCoMan must be able to conduct optimized reconfiguration scenarios. This
involves taking into account context specific information such as the character-
istics of the network services that will be reconfigured and the reconfiguration
semantics.

• Limited openness. To conceal the complexity of dynamic network software
reconfiguration, NeCoMan’s reconfiguration API must be limited. A network
administrator should only be able to specify what reconfiguration NeCoMan
must execute, instead of also defining how this reconfiguration must be coor-
dinated.

• Reusability. The dependencies between the NeCoMan middleware and the
nodes that it reconfigures must be minimal. This enables to deploy NeCoMan
on top of different node architectures2.

1.4 Overview

The remainder of this text is structured as follows. Chapter 2 clearly delimits
the scope of this dissertation in the context of programmable networks, dynamic
software reconfiguration, and change management research. Next, Chapters 3 and 4
explain how the NeCoMan middleware executes local reconfigurations. Chapters 5
and 6 then elaborate on distributed reconfigurations. After that, Chapter 7 presents
the design of the NeCoMan middleware and evaluates the reconfiguration overhead
that NeCoMan brings about. Next, Chapter 8 situates our approach with regards
to related research in the field of programmable networking. Finally, Chapter 9
summarizes the main achievements presented in this dissertation, and identifies
future research tracks that spin off from this research.

2As we further explain in Chapters 2 and 3, these node architectures must (1) must support
compositional adaptation, and (2) provide a predefined set of reconfiguration operations for NeCo-
Man to invoke



Chapter 2

Background and scope

The objective of this chapter is to clearly delimit the scope of this dissertation.
As illustrated in Figure 2.1, this dissertation brings together the following research
topics: programmable networks, dynamic software reconfiguration and dynamic
change management. Over the past decade, interest in these topics has increased
significantly, resulting in numerous projects that each target various concerns. Sec-
tions 2.1, 2.2, and 2.3 therefore position this dissertation in each of these research
areas, respectively. Next, Section 2.4 elaborates on the characteristics of the network
services that we target for dynamic reconfiguration. Section 2.5 then distinguishes
between service-internal and service-external communication ports. After that, Sec-
tion 2.6 motivates in more detail the four requirements that NeCoMan must fulfill.
Finally, Section 2.7 presents a detailed overview of the following chapters.
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Figure 2.1: Research context
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2.1 Programmable networks

Traditional data networks provide a transport mechanism to transfer bits from one
end system to another. To scale up their performance and availability, processing
within these networks was limited largely to routing, congestion control and sim-
ple quality of service (QoS) support [83, 112, 25]. As already mentioned in the
introduction1, considerable interest has raised over time to push more and more
functionality inside the network, so as to provide better network services to users
in a cost-effective way. Unfortunately, the closed and inflexible nature of today’s
networks is an obstructive factor in this evolution2. The current process to change
network protocols and services is both lengthy and difficult because it requires
standardization, adaptation of vertically integrated network devices, and manual,
backwardly-compatible deployment [141]. For example, there was a span of five or
more years from the time the Resource Reservation Protocol (RSVP) was concep-
tualized to the time it was deployed, even in a very limited manner [55].

Programmable networks seek to address the increasing demand for network soft-
ware programming by opening up the network, and by simplifying and accelerating
its programmability in a secure and controlled manner. As a result of building pro-
grammability into the network infrastructure, programmable networks enable to
create, deploy, and manage novel network services without going through a lengthy
and difficult standardization and deployment process [28]. Programmable networks
thus aim to transform the employed network infrastructure into a flexible comput-
ing environment where the behavior of routers, firewalls, base stations, etc. can be
changed rapidly in response to new requirements.

Over the past decade, the programmable networks research community has in-
vestigated many aspects of network programmability, resulting in a number of toolk-
its [141, 14], network programming models [36, 144, 133, 99, 143, 25], special-purpose
network programming languages [55, 102], node operating systems [95, 108], node
programming architectures [18, 12, 75, 119, 71], and protocols [142, 10]. Because
the programmable networks umbrella covers such a wide variety of research projects
that each target various concerns, it is important to clearly delimit the scope of this
dissertation in the field of programmable networking. This scope encompasses dy-
namic software reconfiguration in out-of-band active networks.

In the remainder of this section, we first compare and contrast the charac-
teristics of such out-of-band active networks with other programmable networking
initiatives3. To do so, Subsection 2.1.1 outlines a reference architecture Coulson
et al. have proposed in [36] to study the design space of programmable network-
ing. Next, Subsection 2.1.2 distinguishes between in-band and out-of-band network

1more specifically, in Section 1.1 (page 4)
2except for vendor-specific network function customizations that are transparent to end-user

systems
3presenting a complete survey of programmable networks research is beyond the scope of this

dissertation; for an overview of a broad spectrum of programmable networks projects we refer
to [126, 28, 112]
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Figure 2.2: A reference architecture for programmable networking, presented by
Coulson et al. in [36].

programming. Subsection 2.1.3 then discusses three approaches that have emerged
over time to build programmability into the network infrastructure, including the
out-of-band active approach. Finally, Subsection 2.1.4 reflects on dynamic software
reconfiguration in programmable networks, aiming at out-of-band active networks
in particular.

2.1.1 A design space of programmable networking

To classify programmable network research, Coulson et al. have proposed an in-
teresting reference architecture to represent the design space of programmable net-
working [36]. As illustrated in Figure 2.2, this (highly abstract) architecture con-
tains four strata: a hardware abstraction stratum, an in-band functions stratum, an
application services stratum, and a coordination stratum. Because this reference
architecture is an interesting means to clearly delimit the programmable networking
functionality that this dissertation targets, we describe each of these strata in the
remainder of this subsection.

Hardware abstraction stratum

The hardware abstraction stratum contains the operating system functionality of
programmable nodes. This functionality serves to enable higher-level programma-
bility, among others by providing abstractions to access node resources – including
computing cycles, storage, and transmission bandwidth – in a controlled and secure
manner. Additionally, functionality in this stratum shields the underlying hardware
heterogeneity, so as to offer a uniform API to the node programming functionality
of the upper strata.

Examples of programmable networking initiatives that focus on this stratum in-
clude the Active Network Encapsulation Protocol (ANEP) [10] and ActiveIP [142],
which both specify a mechanism to encapsulate programmed frames for transmis-
sion over today’s Internet infrastructure. Other projects that address stratum 1
concerns include node operating systems such as Bowman [95], a node os serving
the CANEs network programming functionality [119], and NodeOS [108], which tar-
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gets portability of node programming functionality across different types of physical
nodes by exposing a common, standard interface.

In-band functions stratum

The in-band functions stratum comprises low-level packet processing functions that
affect most or all packets. Examples of such functionality include, among others,
packet filtering, classification, scheduling, header processing, and queueing. Because
of their very nature, these low-level in-band functions are performance critical; their
implementation efficiency has a direct bearing on the network performance.

Examples of programmable networking projects that are targeted at this stratum
include a number of software architectures for building flexible and configurable
routers, such as the Click modular router [75], VERA [71], Washington University’s
pluggable router framework [38], the NetBind toolkit [26], and the PromethOS NP
framework [117]. In addition, also part of the Mobiware toolkit functionality [14]
– which aims to improve QoS in mobile system by supporting the introduction of
new adaptive mobile services at the transport, network and datalink layer – focuses
on the in-band functions stratum.

Application services stratum

The application services stratum, as its name already suggests, covers higher-level
application-related network services. In contrast to stratum 2 functionality, this
stratum comprises coarser grained network services that apply to pre-selected packet
flows in application specific ways. These services therefore are less performance
critical.

Examples of programmable networking initiatives that (partially) focus on this
stratum include many “active networks” projects [141, 55, 56, 102, 9, 120, 131, 39,
144, 10, 142]. As we further discuss in the next section, these networks enable
applications to insert application-specific control in the data path, thus customiz-
ing the way packets in transit are processed. In addition, also the Active Services
framework Amir et al. presented in [12] addresses stratum 3 concerns. The authors
of this framework deliberately restricted the network’s programmability to the ap-
plication layer, among others to preserve all the routing and forwarding semantics
of the current Internet architecture. This way, the Active Services framework can
be incrementally deployed in today’s Internet. A last example of programmable
network support that is targeted at this stratum is Nakao’s architecture to estab-
lish network paths for playing media objects (such as MPEG video, MP3 audio,
JPEG images, etc.) [103]. Depending on the resources available at all nodes that a
media object must traverse to reach its destination, Nakao’s architecture distributes
portions of the media processing functionality (such as, for instance, transcoding
behavior) among the intermediate nodes that connect the source to the destination
node.
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Coordination stratum

Finally, the coordination stratum includes or supports out-of-band signaling pro-
tocols that perform distributed coordination (e.g. configuration, reconfiguration)
of the lower strata [36]. Examples of programmable networking projects that are
partially targeted at this stratum include Genesis [27], Mobiware [14], and Dar-
win [29]. Part of these architectures’ functionality is responsible for coordinat-
ing the distributed execution of their customized router services. Other initiatives
that address stratum 4 concerns include Ensemble [133] and Cactus [30]. These
frameworks for constructing adaptive protocol stacks provide support to coordinate
dynamic reconfiguration of distributed services and communication protocols.

2.1.2 In-band versus out-of-band network programming

Besides the networking functionality they focus on, programmable network projects
differ as well by their ability to program nodes in an out-of-band or an in-band
fashion [23]. In case of out-of-band network programming, node programs4 and
payload data are distributed by logically and/or physically distinct communication
channels. Consequently, as Figure 2.3 illustrates, network programs and payload
data are carried discretely – that is, within separate packets –, and are exchanged
by a separate control and data plane. Data packets thus cannot individually adapt
the behavior of network nodes.

In case of in-band network programming, network programs and payload data
are carried in an integrated fashion (as illustrated in Figure 2.4). Network packets
in this case may contain both data and network programs. Consequently, the data
and control planes of such in-band programmable nodes are combined (in what is
often referred to as the node execution environment). When a packet arrives at a
programmable node, this node executes the packet’s program (if allowed), optionally
using the payload data as input5.

2.1.3 Network programming paradigms

As stated above, this dissertation focuses on out-of-band active networks. To clearly
define this type of programmable networks, we first elaborate on two other paradig-
matic approaches (discussed by Calvert et al. in [25]) that have emerged over time
to build programmability into the network infrastructure: open signaling and active
networks. In addition to both approaches, Coulson et al. have identified out-of-band
active networks as a third paradigmatic approach that positions between open sig-
naling and active networks [36]. As we further discuss in the remainder of this

4These node programs may contain, at one extreme, a scalar argument to select a pre-defined
computation at the network nodes, or at the other extreme, mobile code written in a Turing-
complete language that must be interpreted and executed by the network nodes [25].

5Note that the execution of these in-band programs may require out-of-band deployment of
processing routines that are unavailable at the moment of execution.
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Figure 2.3: Out-of-band network pro-
gramming

Figure 2.4: In-band network program-
ming

section, all three approaches differ, among others, by the strata of Coulson’s ref-
erence architecture they target, as well as by their ability to support in-band or
out-of-band programming (see Table 2.1 for an overview).

A first approach to increase network programmability is advocated by the open
signaling (Opensig) community. This community mainly focuses on extending rout-
ing and switching hardware with well-defined programming interfaces to open up
these devices. Such interfaces allow service providers to (re)configure network de-
vices remotely in an out-of-band manner, among others by using middleware toolkits
or specific signaling protocols. Besides, open signaling takes a telecommunications
approach to make the network programmable by clearly separating network control
and management functionality (located at the control plane) from data transport
(located at the data plane) [28]. Furthermore, this approach primarily targets net-
work devices that provide some level of QoS support, such as IP routers [29], ATM
switches [132], and nodes of mobile networks [14]. Research projects that adopt
the open signaling approach include Mobiware [14], the Tempest framework [132],
Genesis [27], and Darwin [29]. These projects tend to focus mostly on strata 2 and
4 of Coulson’s programmable networking reference architecture.

The active networks (AN) approach [126, 112] is an order of magnitude more
flexible: it gives applications control over the network services and allows them to
tailor these services to application needs. Active network technology achieves its
flexibility by allowing (untrusted) applications to insert application-specific control
in the data path. Typically, imperative programs written in a specialized language
are carried in network packets (which are referred to as active packets). Such
languages can be seen as glue languages that compose node extensions together to
form a customized service. These node extensions are custom pieces of software that
are dynamically installed at the various nodes and form the basic building blocks
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approach adaptation strata flexibility
safety &

deploy-
security

ability
vulnerability

active networks in-band 1 & 3 +++ higher –

out-of-band
out-of-band 2 & 3 ++ medium +

active networks

open signaling out-of-band 2 & 4 + lower +

Table 2.1: Comparison of active networks, out-of-band active networks and open
signaling networks

for more elaborate services. In contrast to the open signaling approach, active
networks thus support in-band customizations of network services at packet trans-
port granularity, rather than out-of-band reconfigurations through a dedicated open
control interface. This originates from a history of AN projects that have focused
primarily on IP networks, where the control and data paths are combined. Such re-
search projects include ANTS [141], the Active Service Framework [12], PLAN [55],
PLANet [56], SNAP [102], SwitchWare [9], smart packets [120], M0 [131], Dan [39],
NetScript [144], ANEP [10], and ActiveIP [142]. These projects tend to focus mainly
on strata 1 and 3 of Coulson’s programmable networking reference architecture.

In addition to these two schools of thought on how to make networks pro-
grammable, Coulson et al. have identified a third paradigmatic approach which they
refer to as out-of-band active networks [36]. This paradigm promotes a restricted
active networking approach. Similar to regular active networks, out-of-band active
networks allow to dynamically install downloadable node extensions onto IP routers.
The behavior of these network nodes, however, is not customized by (untrusted)
packets passing by, but instead become reconfigured in an out-of-band manner by
external (expert) actors such as network administrators, network engineers, adap-
tive network management software, etc. Once node extensions are deployed and
brought into use, they are employed just as any other service is employed in today’s
closed networks. Research initiatives that adopt the out-of-band active approach
include VERA [71], Click [75], Ensemble [133], Cactus [143], DiPS+ [97, 99], router
plugins [38], and the dynamic-reconfigurable protocol stack that Lee et al. pre-
sented in [82]. These projects tend to focus mostly on strata 2 and 3 of Coulson’s
programmable networking reference architecture.

Furthermore, the out-of-band active networking approach positions between the
two classic approaches in terms of flexibility, security and safety vulnerability, and
deployability (see Table 2.1 for an overview). We illustrate this in the remainder of
this subsection.
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Flexibility

The ability for applications to tailor network services according to their specific
needs potentially makes active networks the most flexible of all three approaches.
We deliberately say ‘potentially’, because the flexibility of an active network de-
pends among others on the degree of network programmability. At one extreme,
packets (sometimes referred to as “capsules” [141]) carry mobile code that will be
executed at all nodes in transit. At the other end of this spectrum, packets may con-
tain a scalar argument to select a pre-defined computation at the network node [25].
Other initiatives such as the PLAN [55] and SNAP [102] languages position between
both extremes. These special-purpose languages restrict the expressiveness of pro-
grams carried by active packets, so as to increase among others the safety, security,
and performance at which new services can be introduced in the infrastructure.

In addition, the flexibility of active networks relates to the supported “granular-
ity of control” [25] as well, which indicates the scope of node behavior that can be
modified by a received packet. As Calvert et al. describe in [25], at one end of this
spectrum, a single packet can modify the node behavior seen by all packets arriving
at a node. At the other extreme, a single packet modifies the behavior seen only
by that one packet. Between these extremes, modifications may apply to a packet
flow, which can be defined as a set of packets sharing some common characteristics.

Out-of-band active networks, in contrast, are less flexible than regular active
networks. Recall that the behavior of these network nodes is not customized by
packets passing by, but instead become reconfigured in an out-of-band manner by
external (expert) actors. Similar to regular active networks, out-of-band active
networks are concerned with supporting the deployment of an extensive set of new
IP services. The flexibility of out-of-band active networks thus also depends on
the degree of network programmability. Because network customizations become
initiated in an out-of-band manner, however, the granularity of control is more
coarse grained than for regular active networks: a modification may apply to a
packet flow in case of a stratum 3 service, or to all packets arriving at the node in
case of a stratum 2 function.

Finally, many open signaling architectures are less concerned with attaining
maximum flexibility. Their main concern is to provide controlled QoS support for
a given context, such as mobile networks, rather than supporting the introduction
of a virtually unlimited set of novel services.

Security and safety vulnerability

While network programmability increases flexibility, it also raises safety and security
concerns. According to the terminology used in [55], safety refers to reducing the
risk of mistakes or unintended behavior, while by security we mean the usual concept
of protecting privacy, integrity, and availability in the face of malicious attacks.

Since flexibility has a direct bearing on security and safety vulnerabilities, the
regular active networking approach is perceived as more prone to these threats than
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the out-of-band active networking and open signaling approaches. Because many
active network platforms allow (untrusted) applications to attach arbitrary code to
data packets, solid security mechanisms must prevent the execution of malicious
code in a shared network infrastructure. These demanding security precautions
– in the worst case the code of every packet must be controlled – consequently
also affect the performance of programmable networks. In addition, network code
supplied by application programmers will be more error-prone. This results, among
others, from the problem that application programmers typically are not network
specialists. They know the application domain very well, but in general they do not
know how to develop a network service. We call this problem domain mismatch:
application programmers, who wish to customize the way their applications are
executed, are suddenly confronted with a domain (in this case, active networks)
that is completely different from the familiar application domain.

Out-of-band active networks, in contrast to regular active networks, can control
and secure network software customizations more easily. As already mentioned
above, these customizations are not triggered by (untrusted) packets passing by,
but instead become initiated in an out-of-band manner by external (expert) actors.
This has a direct bearing on safety and security vulnerability. First, because node
extensions are developed by network experts instead of application developers, these
extensions are considered as less error-prone. Second, the out-of-band installation
of new network extensions enables to employ a set of existing security mechanisms
including encryption, program verification, and authentication. Third, recall that
out-of-band customizations typically do not operate at packet-level granularity, but
instead apply to a packet flow or to all packets arriving at the customized nodes.
Security checks thus are executed at a lower frequency as for most regular active
networks, which reduces their impact on network performance.

Finally, because open signaling networks often provide a more restricted level of
network programmability, they can be perceived as the least vulnerable to security
and safety threats of all three approaches to increase network programmability.

Deployability

A final characteristic to compare these approaches is the ability to be deployed in
legacy networks. Recall that regular active networks support in-band customiza-
tions of network services at packet transport granularity. The packets that the nodes
of these networks exchange may carry network programs as well as payload data.
When the format of these packets does not conform to the protocol specifications
adopted by legacy network nodes (such as for instance the packet format defined
by the IP standard), these packets will not be interpreted correctly by legacy nodes
and thus may become discarded. Additional support is needed to enable the inte-
gration of such active network nodes in a legacy network environment. Protocols
like ActiveIP [142] and ANEP [10] seek to achieve this by tunnelling active packets
over legacy network nodes.
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Both out-of-band network programming approaches, in contrast, can be de-
ployed more easily. Because these networks become programmed in an out-of-band
manner, node programs and payload data are distributed by logically and/or phys-
ically distinct communication channels. As this involves the use of legacy networks,
no tunnelling support is needed to enable the large-scale deployment of out-of-band
active networks and open signaling networks. Note, however, that this requires for
the programmable nodes to preserve all the routing and forwarding semantics of
the “hosting” network architecture.

2.1.4 Dynamic reconfiguration in out-of-band active networks

The majority of programmable network architectures do not support dynamic soft-
ware reconfiguration6. These network architectures enable the initial deployment
of specific services, but do not support subsequent reconfigurations of services that
are already in use, among others because they encapsulate state [58]. However, this
imposes two restrictions on programmable networks.

First, it limits the ability of programmable networks to accommodate evolu-
tionary changes. In PLANet, for instance, some components are always in use; the
packet queue may always contain packets, and therefore may never be upgraded [58].
Second, it restricts the ability to provide adaptive network support when memory
resources on network devices limit the number of service components that can be
stored simultaneously. If this is the case, dynamic software reconfiguration enables
to implement adaptive support by switching service components in and out of light-
weight programmable nodes at runtime on an as-needed basis.

This dissertation, therefore, investigates dynamic software reconfigura-
tion in programmable networks. More specifically, and as already men-
tioned a few times before, we target dynamic software reconfiguration
in out-of-band active networks. Although we do not claim that this
programmable networking approach will become dominant in use, we
believe it has significant potential to enable network programmability in
a controlled and secure way.

2.2 Dynamic software reconfiguration

Over the past two decades, researchers and developers have investigated various
aspects of dynamic software reconfiguration. As Subsection 2.2.1 illustrates, this
has resulted in a wide variety of methods, tools, and techniques to enable structural
software reconfiguration without temporarily shutting down (part of) the system.
Many of these approaches, however, do not assure that system consistency will be
preserved after reconfiguration. In the context of programmable networks, this may

6Exceptions to this include Click [75], Ensemble [133], Cactus [30], Netkit [36], and Lee’s
dynamically reconfigurable protocol stack [82]
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potentially break the stringent availability requirements that computer networks
must satisfy. Subsection 2.2.2 therefore elaborates on how to leave a system in a
consistent state after reconfiguration such that it can continue functioning normally.

The next subsections aim to clearly delimit the scope of this dissertation in
the context of dynamic software reconfiguration, which encompasses dynamic com-
positional adaptation in pipe-and-filter (network) software architectures. Subsec-
tion 2.2.3 first introduces compositional adaptation, and then discusses three key
enabling technologies: separation of concerns, component-based design, and com-
putational reflection. Next, Subsection 2.2.4 elaborates on pipe-and-filter based
(network) software architectures, and discusses how these architectures promote
the development of flexible (network) software. Finally, Subsection 2.2.5 briefly
presents the characteristics of DiPS+, a pipe-and-filter network architecture de-
veloped at DistriNet which has served as network programming environment to
validate the NeCoMan middleware.

2.2.1 A brief overview of dynamic software reconfiguration
approaches

The increasing pace of research in the area of dynamic software reconfiguration has
resulted in a wide variety of methods, tools, and techniques to support structural
software reconfiguration without temporarily shutting down (part of) the system.
To familiarize the reader with the diversity of research in this area, this section
presents a brief overview7 of research that targets dynamic software reconfiguration.
We classify this research by the supported unit of adaptation, as well as by the
employed structural reconfiguration mechanism.

Unit of adaptation

An important aspect of dynamic software reconfiguration is the supported unit of
adaptation, as this impacts the granularity at which structural adaptations can be
performed. We define this unit of adaptation as follows:

A unit of adaptation represents the most fine-grained software abstrac-
tion that is subject for structural change.

Evidently, a reconfigurable system’s unit of adaptation highly depends on the
adopted programming language model. Fabry’s work on dynamic software reconfig-
uration, for instance, enables to dynamically upgrade the implementation of abstract
data types (ADTs) [41]. Other research efforts focus on dynamic software adapta-
tion of procedure-oriented systems, thus operating at the granularity of procedures
(also called functions, routines, subroutines, or methods, depending on the pro-
gramming language). These research projects include PODUS [121], and the work
of McNamee [93], Hicks [57], and Lyu [85].

7This is by no means an exhaustive overview. For a more detailed overview of research efforts to
support dynamic software reconfiguration, we refer to a number of interesting surveys [47, 8, 94, 91].
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A different research thread in the area of dynamic software reconfiguration tar-
gets object-oriented systems. In short, object-oriented programming (OOP) is a
programming language model that presents a software system as a collaboration
of modules (“objects”) that each encapsulate their own internal state and execute
a common task by invoking each other’s interface. Additionally, each object is a
specific instance of a “class”, which specifies a template definition of the meth-
ods and variables for a particular set of objects. In this context, projects such as
JDrums [114], Kava [140], and the work of Malabarba [87] have investigated how to
customize class structures, variable types, object collaborations, etc. at run-time.

Additionally, a vast majority of research on dynamic software reconfiguration
targets component-oriented systems. Component-oriented programming (COP), in
contrast to object-oriented programming, aims to build software systems through
the composition of predefined software modules (“components”). As we further
discuss in Section 2.2.3, the explicit notion and reification of software composition
makes component-oriented systems very suitable for dynamic software reconfigura-
tion – often referred to as dynamic software (re)composition. Many research projects
that focus on dynamic software reconfiguration, therefore, have investigated how to
dynamically change the behavior of component-oriented systems. These include
Simplex [122, 115], SOFA/DCUP [109], Hercules [32], Netkit [36], DiPS/CuPS [68],
Draco [134], ACT [118], OpenORB [20], 2K [76], the CIAO/QuO middleware [138],
and the work of Feng et al. [43].

Another research thread on dynamic software reconfiguration targets aspect-
oriented systems. In short, aspect-oriented programming (AOP) seeks to enable
the modularization of system concerns that inherently crosscut multiple software
modules – such as security, logging, and persistence, to only name a few. Object-
oriented techniques for implementing such crosscutting concerns (called “aspects”)
most often result in systems that are invasive to implement, hard to understand,
and difficult to maintain and adapt [73, 105]. The AOP community has recognized
this problem and investigates how to separate these crosscutting concerns from the
system’s functional logic. In this context, research projects such as Lasagne [128,
129, 130], PROSE [110], and Handi-Wrap [15] have explored how to dynamically
reconfigure these crosscutting concerns.

Finally, a number of research projects implement dynamic reconfiguration by
replacing the node processes collaborating in a distributed system. Kramer and
Magee justify these coarse grained adaptations by arguing that software reconfig-
uration at the granularity of fine grained programming elements is at too low a
level, being both too detailed and impractical due to the tight coupling with other
program elements [79]. Research projects that focus on such coarse grained recon-
figurations include Conic [79], Polylith [62, 113], and the work of Kindberg [74],
and Goudarzi [101, 100].
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Structural reconfiguration mechanism

In addition to the unit of adaptation, most dynamic reconfiguration projects differ
as well by the employed mechanism to enable structural change. Table 2.2 lists a
number of these mechanisms, along with some references to systems that implement
them. These mechanisms can roughly be classified into three categories: indirection
mechanisms, relinking mechanisms, and mechanisms based on design patterns.

Indirection mechanisms exploit a level of indirection in the interactions between
software entities. This enables to reconfigure a system’s software structure by in-
tercepting and redirecting interactions among different software entities. These
indirections, however, introduce a performance cost when software entities invoke
each other during regular execution.

Relinking mechanisms, in contrast, do not exploit indirections but carry out a
reconfiguration by relinking all references from old to new software entities. To
change a system’s software structure, the reconfiguration system8 must trace all
references that are involved and fix them. The main advantage of this mechanism
is that it reduces the overhead caused by indirections. A drawback is that the
reconfiguration system must keep track of all software entities to make sure that
every broken link becomes repaired.

Finally, mechanisms based on design patterns seek to achieve structural software
reconfiguration in a language-neutral manner by focusing on the system’s software
design. In [50], Gamma et al. define design patterns as “descriptions of communi-
cating objects and classes that are customized to solve a general design problem in
a particular context”. As illustrated in Table 2.2, a number of these design pat-
terns aim to increase software flexibility, which makes them an interesting means
to develop software systems that support structural reconfiguration.

2.2.2 Consistency preservation

As illustrated in the previous section, much research in the area of dynamic software
reconfiguration has focused primarily on providing support to enable dynamic re-
configuration of software systems. Most of these enabling technologies do not assure
that system consistency will be preserved after reconfiguration – that is, they do not
assure that system parts interacting with entities under reconfiguration do not fail
because of the reconfiguration. For dynamic software reconfiguration to be effec-
tive, however, this is an essential pre-condition: after completing a reconfiguration,
the system must be left in a “correct” state such that it can keep on functioning
properly. After all, the effort in reconfiguring a system would be in vain if a faulty
reconfiguration process compromises the system’s correct functioning. This applies
in particular to programmable networks, which have to satisfy stringent availability
requirements.

8which conducts the actual reconfiguration
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indirection
mechanism

description refs

function
pointer
indirection

Enables to dynamically adapt a program’s execution
path by altering the function pointer.

[41, 93]

meta-object
protocol

Allows to modify a program behavior’s by supporting
introspection and intercession (for more details, see
Section 2.2.3).

[20,
140, 78,
130]

debugging
support

Enables to intercept and redirect method invocations
while executing the software system in debugging
mode.

[110]

relinking
mechanism

description refs

code
relinking

All links to the old programming entities become
redirected to refer to the new ones

[57, 82]

architectural
connectors

These architectural abstractions mediate communi-
cation between software modules (both local and dis-
tributed). A reconfiguration thus involves replacing
these connectors.

[104,
68, 80,
101]

design
pattern

description refs

proxy
pattern

Provides a surrogate or placeholder for another ob-
ject to control access to it.

[118,
74, 43]

strategy
pattern

Encapsulates a family of algorithms and makes them
dynamically interchangeable

[78]

decorator
pattern
(wrapper)

Attaches additional responsibilities to an object dy-
namically. Decorators provide a flexible alternative
to subclassing for extending functionality

[130]

Table 2.2: An overview of structural reconfiguration mechanisms

As Goudarzi describes in [100], a dynamic software reconfiguration yields a cor-
rect system if after completing the reconfiguration process:

1. the system satisfies its structural integrity requirements,

2. the entities in the system are in mutually consistent states, and

3. the application state invariants hold.

We elaborate on these pre-conditions for safe dynamic software reconfiguration in
the remainder of this section.
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2.2.2.1 Structural integrity

A first pre-condition for safe dynamic software reconfiguration relates to the sys-
tem’s software structure: after completing a reconfiguration, the system must still
satisfy its structural integrity requirements. As Almeida correctly states in [11],
these structural integrity requirements constrain the structure of a system in terms
of the relationships between collaborating software entities9 and the ways in which
these entities must be put together. A system’s structural integrity requirements
thus define how its software entities must be inter-connected such that the system
can operate correctly. Preserving structural integrity after reconfiguration therefore
involves maintaining referential integrity, interface compatibility, and (distributed)
dependencies.

Referential integrity. Referential integrity may be broken when replacing soft-
ware entities. Once an entity is replaced, all its client processes must be redirected
consistently to invoke the new software entity instead of the old version. In some
cases, however, the entities to be replaced may not be aware of their client processes.
Feng et al. refer to this as the “referential transparency problem” [43]. Additionally,
in many cases these client references must be redirected atomically, so as to prevent
inconsistencies caused by some client processes that still invoke the old software
entities while others already invoke the new versions.

Various research projects have investigated how to preserve a system’s referen-
tial integrity. Feng et al., for instance, solve the referential transparency problem by
employing proxy-objects [43]. These proxy objects provide placeholders for replace-
able objects. Because client processes invoke these proxies instead of the associated
replaceable objects, the latter become decoupled from their client processes. Conse-
quently, replacing such an object involves only redirecting its (single) proxy object,
instead of redirecting each one of its client processes. Gilgul adopts the same princi-
ples but implements them in a different way to support transparent upgrades of Java
objects [33, 34]. A reference to an object in Gilgul’s model is realized as an object
oriented pointer, which points to an entry in an object table that holds the actual
memory address of the object. This enables to replace objects at runtime trans-
parently for their client processes by changing the associated memory addresses.
Almeida et al., for their part, target referential integrity in the context of dynamic
software reconfiguration for CORBA middleware [11]. In order to re-establish bro-
ken bindings after reconfiguration, they provide a central point of contact for clients
to find the objects with invalidated object references. Finally, JDrums employs a
modified Java Virtual Machine (JVM) to preserve referential integrity when up-
grading Java classes [114]. After loading a new class into the modified JVM, the
objects of the old class are converted to the new version when they are invoked
(lazy upgrades). Once a new object is initialized, JDrums replaces this object’s old

9A software entity may be a procedure, object, component, aspect, etc., depending on the unit
of adaptation supported by the employed programming model.
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reference in the JVM with a reference to the new object, such that only the latter
will be invoked afterwards.

Interface compatibility. Besides preserving referential integrity, interface com-
patibility must be dealt with as well to preserve a system’s structural integrity.
When replacing a software entity with a new version, the latter must satisfy the in-
terface definition of the original version for the associated client process to continue
operating normally. Systems like SOFA/DCUP [109], JDrums [114], and Almeida’s
extension of CORBA [11] meet this requirement by adopting Liskov’s substitution
principle [84]. These systems support the upgrade of an old software entity when
the new version implements the original interface or when it implements an interface
that is derived from the original one. This way, a software entity can be replaced
transparently without compromising the functioning of its client processes.

Dependency preservation. Finally, preserving a system’s structural integrity
requires to maintain all dependencies between the system’s collaborating software
entities as well. When software entities need to collaborate for the system to perform
correctly, breaking these dependencies during a reconfiguration compromises the
correct functioning of that system. To illustrate this in the context of programmable
networks, suppose two neighboring network nodes are equipped with a compression
and a decompression entity, respectively. The node hosting the compression entity
thus expects from its neighbor node to restore compressed data packets into their
original state. To prevent breaking this dependency, structural changes that affect
both entities (such as exchanging the employed compression algorithm) must be
carried out atomically. If this is not the case, for example, packets processed by the
old compression entity may not be decompressed correctly when the neighbor node
is already upgraded to use the new algorithm10. Breaking the dependency between
both entities thus compromises the correct functioning of both the compression
service and the network.

Various research projects have focused on preserving distributed dependencies
during dynamic reconfiguration. The earliest work on atomic distributed recon-
figurations appears to be Bloom’s research on upgrades in Argus [21, 22], where
one dedicated node coordinates distributed reconfigurations among the other ones.
Ensemble [133] and Cactus [30], in contrast, conduct atomic distributed reconfigura-
tions by employing a distributed coordination protocol. Lasagne adopts a different
approach to preserve distributed dependencies. This system provides system-wide
structural consistency by having customizations propagated together with the mes-
sage flow of an entire collaboration [128, 129, 130]. Finally, Ensink et al. preserve
distributed dependencies by scheduling the local reconfiguration operations [40].

10presupposing that this new decompression entity is not backward-compatible with the old
version
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2.2.2.2 Mutually consistent execution states

In addition to preserving structural integrity, a second pre-condition for safe dy-
namic software reconfiguration relates to the execution state of the software entities
that will be reconfigured: after completing a reconfiguration these states must be
mutually consistent, such that a system can continue processing normally rather
than progressing towards an error state. To illustrate this, consider the replace-
ment of a database-service while being in the middle of processing a query. In that
case, the client process may continue waiting for a reply that will never arrive since
the new database-service is unaware of previously ongoing requests. Consequently,
if mutually consistent execution states are not preserved after completing a dynamic
reconfiguration, the costs and risks introduced by failures and inconsistencies may
outweigh those introduced by conducting the reconfiguration off-line.

Many different approaches have been proposed to preserve mutually consis-
tent execution states in the context of dynamic reconfigurations. Kramer and
Magee, for instance, have stated that software modules must be both consistent
and frozen [80, 81] before being reconfigured. When software modules are consis-
tent, they do not contain results of partially completed services (or transactions).
By freezing software modules, new transactions are prevented from executing and
thus cannot cause state changes. Kramer and Magee define this consistent and
frozen state as the quiescence of a software module. They propose a mechanism
to impose such a quiescent state by means of a configuration manager, which rec-
ognizes and finishes (or deactivate) the relevant transaction initiators [80]. Besides
Kramer and Magee’s implementation, various other projects provide support as well
for their software modules to reach a quiescent state. These include Cactus [30],
Ensemble [133], and the work of Goudarzi [101, 100] and Almeida [11].

As an alternative, Hofmeister has proposed to freeze a software module immedi-
ately instead of waiting for it to reach a desirable state [61]. However, since in this
case there is no guarantee about the termination of a transaction in progress at the
moment the actual reconfiguration is conducted, reconfiguration can endanger the
system’s consistency. By consequence, mutually consistent execution states can only
be preserved by means of additional consistency recovery support, which requires
software modules to capture and reinstate module specific state at runtime. Incon-
sistencies are thus allowed during reconfiguration, as long as consistency returns
when the reconfiguration is complete. Other systems that implement state transfer
as well include the work of Gupta [54], Vandewoude [136, 135], and Kasten [72].

The problem of preserving mutually consistent execution states has also been
recognized in the area of dependable real-time systems. The Hercules framework [32]
and the Simplex architecture [122, 115] propose a different strategy from the pre-
vious ones to preserve consistency. Both frameworks allow for the old and new
version of a module to coexist during a reconfiguration. Once the output of the
new software module converges with that of the old one according to user provided
criteria, mutually consistent execution states are reached. The output of the old
module is then turned off and the new module is brought in use. However, testing
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for convergence of the output generated by two coexisting components can be very
difficult. Besides, there might be no guarantee concerning convergence anyway.
We believe that this approach therefore is limited in its ability to be employed in
programmable networks.

Finally, we briefly present two other approaches to preserve mutually consistent
execution states which are not applicable either in the context of this disserta-
tion. Bloom’s dynamic reconfiguration support [21], for instance, makes use of the
transactional support that Argus provides – to be precise, Argus guarantees that
actions are atomic and that stable state survives crashes. Bloom uses this support
to initialize a new software module in the correct execution state by instructing
Argus to restore the last stable state of the old software module. Ajmani et al., for
their part, provide a different way to preserve consistent execution states of objects
from one version to the next [7]. Their approach involves the use of “simulation
objects”, which implement the behavior of different versions of a specific object by
calling methods of the latter. This way, all new versions of a specific object are
automatically initialized in the correct execution state.

2.2.2.3 Application state-invariants

A last pre-condition for safe dynamic software reconfiguration relates to the applica-
tion state-invariants11. These invariants define the predicates for a reconfiguration
to be legal, each expressed over the state of (a subset of) the entities in the sys-
tem [100]. A typical example to illustrate this involves the replacement of a module
that generates unique ID’s. For this replacement to be legal, the new generator
should not repeat ID’s that were already produced by the old version. To preserve
this invariant, the new generator must be initialized in a state which prevents it
from producing ID’s that were already generated by the old module. Because pre-
serving application state-invariants is beyond the scope of this dissertation, we do
not further elaborate this topic.

2.2.3 Dynamic compositional adaptation

The two previous subsections have presented a wide variety of research efforts in
the context of dynamic software reconfiguration that each target various concerns.
To gain focus, this and subsequent sections aim to clearly position this dissertation
in such a wide and active research area. To be precise, in the context of dynamic
software reconfiguration this research concentrates on compositional adaptation of
pipe-and-filter architectures.

We start by elaborating on compositional adaptation. In [92], McKinley et al.
define compositional adaptation as follows:

11Bloom refers to this invariant as a system’s “continuation abstraction” [21].
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Figure 2.5: Modularized concerns Figure 2.6: Crosscutting concerns

Compositional adaptation exchanges algorithmic or structural system
components with others that improve a program’s fit to its current envi-
ronment. With compositional adaptation, an application can adopt new
algorithms for addressing concerns that were unforeseen during devel-
opment. This flexibility supports more than simple tuning of program
variables or strategy selection. It enables dynamic recomposition of the
software during execution – for example, to switch program components
in and out of a memory-limited device or to add new behavior to deployed
systems.

This makes compositional adaptation an interesting approach to implement dy-
namic software reconfiguration of programmable networks12. More in detail, com-
positional adaptation enables programmable networks to deal with both shortcom-
ings listed in Section 2.1.4. First, it permits programmable nodes to dynamically
add, replace, or remove network service components to accommodate evolutionary
changes. Second, when memory resources on network devices restrict the number
of service components that can be deployed simultaneously, compositional adap-
tation enables to develop adaptive network support that customizes light-weight
programmable nodes at runtime on an as-needed basis.

As McKinley et al. stated in [92], compositional adaptation has been enabled by
the confluence of three key technologies: separation of concerns, component-based
design, and computational reflection. We elaborate on these key technologies in the
remainder of this section.

Separation of concerns

As Parnas already stated in the 70’s, separation-of-concerns (SoC)13 is an essential
principle for improving a system’s flexibility and comprehensibility [106]. In short,
SoC promotes to identify and separate different interests in a program. These con-
cerns are the primary criteria for decomposing software into smaller, more manage-
able, comprehensible, and coherent building blocks [105]. Besides, such decomposi-
tion enables to clearly target the software modules representing a specific concern.

12Note that compositional adaptation is often referred to as component hot-swapping or dynamic
recomposition.

13To be correct, Parnas did not use the term “separation-of-concerns”, but referred to this
principle as “modularization”.
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So, developers can manipulate these concerns without the need for detailed knowl-
edge of other concerns, and without facing accidental complexities that these other
concerns may introduce.

To illustrate the importance of SoC in the context of compositional adaptation,
we refer to Figures 2.5 and 2.6. When a software system’s functional logic has been
decomposed into modular, coherent building blocks that each represent a specific
functional concern, changing one of these concerns can be isolated to a single loca-
tion in the software (as illustrated in Figure 2.5). In addition to their functional
logic, however, software systems often incorporate various additional concerns such
as concurrency, distribution, real-time constraints, persistence, quality-of-service,
testability, logging, and failure recovery. These extra-functional concerns inherently
crosscut the system’s functional logic, and thus break its modular decomposition.
Logging functionality, for instance, is often tangled and scattered with the system’s
functional logic. This makes it difficult to recompose the functional logic without
taking into account the logging support or vice versa (as illustrated in Figure 2.6).
The Aspect Oriented Programming (AOP) community has recognized this problem
and seeks to modularize these crosscutting concerns and decouple them from the
functional logic.

Component-based design

Component-based design is the second key technology supporting compositional
adaptation. In short14, component-based design promotes constructing software
systems through the composition of self-contained building blocks (components)
which may be developed independently, for instance by third parties. This brings
us to Szyperski’s definition of a component [124]:

A component is a unit of composition with contractually defined inter-
faces and explicit context dependencies only. Components can be de-
ployed independently, and are subject to composition by third parties.

According to this definition, components are often represented as coherent soft-
ware modules15 that expose a set of contractually defined “ports”. These ports are
named interfaces and define the operations and events that a component provides or
that it requires from its environment to work properly16. This enables third parties
to compose software systems from a set of predefined components by (directly or
indirectly) connecting the ports of compatible components to each other. To illus-
trate this, Figure 2.7 depicts a composition of three components that are connected
to each other directly. When such a component-based system supports dynamic

14For an excellent analysis of component technology, we refer to [127], section 3.1.2
15Note that a component may package many objects
16Szyperski defines these required operations and events as a component’s context dependen-

cies [127].
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Figure 2.7: A composition of three components.

class loading and late binding17, its composition can be dynamically adapted in a
systematic (as opposed to ad hoc) manner.

Constructing programmable network services through the composition of pre-
defined components thus facilitates customizing these services at runtime. Besides
its value in the technological realization of compositional adaptation, we argue that
component-based development is useful as well to support third party network soft-
ware development. As already mentioned in the introduction, allowing third party
actors to develop future network services enables a free-market for – both open or
proprietary – development of new network services and protocols. For being com-
petitive in this new market, network service developers will have to meet new soft-
ware quality attributes like reusability, maintainability, flexibility, portability, etc.
– that is, additional to the traditional concern for scaling up the network’s avail-
ability and performance. Because component-based software engineering seeks to
support developers to meet these quality attributes, it provides a valuable method-
ology for constructing third party network services whether or not these services
are reconfigured dynamically.

Computational reflection

A third enabling technology for compositional adaptation is computational reflec-
tion. In [86], Maes defines compositional reflection as follows:

Computation reflection is the behavior exhibited by a reflective system,
where a reflective system is a computational system which is about itself
in a causally connected way.

According to this definition, computational reflection (further on called reflec-
tion) refers to a program’s ability to reason about and manipulate itself during the
course of its execution, in the same way as it does in relation to its application
domain [77]. A reflective system therefore exposes its implementation details at a
level of abstraction which hides unnecessary details, but still exposes enough details
to allow for introspection and intercession, – that is, to enable the system to observe
its internal behavior and structure, and if needed, to act on these observations by
adapting itself. For that reason, reflection has been applied in many research ar-
eas, including middleware [78, 20, 77], operating systems [145] and programmable

17which enables to connect its components at runtime
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Figure 2.8: Computational reflection.

networks [137, 36], as a useful technique to open up black-box systems and increase
their flexibility in a systematic manner.

According to [77], a reflective system is structured in terms of a base-level that
deals with application specific concerns, and a meta-level that controls the reflective
behavior (as illustrated in Figure 2.8). At the base-level, the implementation details
that are relevant to the reflective behavior are reified – that is, they are exposed
as programming entities that can be manipulated at runtime. At the meta-level,
the reflective behavior is represented by meta-objects. To illustrate this, Figure 2.8
depicts two different meta-objects that are also provided by the OpenORB middle-
ware [20]: the interface and the interception meta-object. The interface meta-object
enables to inspect the external representation of the software components located
at the base-level by exploring the interfaces they provide and require. The inter-
ception meta-object allows to manipulate the behavior of the base-level system by
performing pre and post-processing of the interactions intercepted at the compo-
nent interfaces. The interaction protocol these meta-objects employ is referred to
as the meta-object protocol (MOP). A MOP thus enables a meta-object to observe
and adapt base-level components, and therefore serves as the glue between a sys-
tem’s meta and base-level. Note that the base-level and the meta-level are causally
connected. Changes to either one will be reflected in the other [92].

Finally, reflective behavior can be classified in two different categories: struc-
tural and behavioral reflection. Structural reflection refers to the ability of a system
to inspect or change the (reified) structural aspects of the software that is currently
operating at the base-level. Structural reflection thus addresses issues related to
component types, component interfaces, compositions, object states, data types,
etc. An example of structural reflection includes the interface meta-object pre-
sented above. Behavioral reflection, in contrast, focuses on the (reified) semantics
of the base-level software [92]. An example of this type of reflection includes the
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interception meta-object, which enables to change the execution of the underlying
program by performing pre and post-processing of intercepted interactions.

To summarize, in the context of dynamic software reconfigura-
tion this dissertation investigates how to coordinate compositional
adaptation in out-of-band active networks. A first precondition
that must be fulfilled, therefore, includes that the affected nodes
support compositional adaptation. Besides, this dissertation tar-
gets compositional adaptation for a specific type of software archi-
tectures, namely pipe-and-filter (network) software architectures.
This will be explained in more detail in the following subsections.

2.2.4 Pipe-and-filter based (network) software architectures

Shaw and Garlan define a pipe-and-filter architecture as follows [123]:

In a pipe-and-filter based architecture each component reads streams of
data on its inputs and produces streams of data on its outputs, usu-
ally while applying a transformation to the input streams and processing
them incrementally so that output begins before the input is completely
consumed.

A pipe-and-filter software architecture thus forces a programmer to develop self-
contained components (filters) that process incoming data, which are then plugged
one after another by means of connectors (pipes) to create a functional system.
This style naturally maps to networking software. A protocol stack, for example,
comprises various functions (such as fragmentation, routing, header parsing and
construction, etc.) that are executed successively on the incoming data packets
(both along the up-going and the down-going path).

Shaw and Garlan describe some interesting properties of this pipe-and-filter
architectural style [123]. Two of them are highly relevant in the context of this
dissertation. First, the pipe-and-filter style supports reuse: any two filters can be
hooked together, provided that they agree on the data that is transmitted between
them. This enables third party network service developers to reuse their service
components in different programmable networks. Second, pipe-and-filter systems
can be easily maintained and enhanced : new filters can be added to existing systems,
and old filters can be replaced by improved ones. In the context of programmable
networks, this enables to build flexible network software architectures.

Because of these properties, various network software architectures have adopted
this pipe-and-filter style. These architectures include NetScript [144], Click [75], the
protocol stack framework that Lee and Chang presented in [82], VERA [71], and
DiPS+ [97, 99], to only name a few. Because the current prototype of the NeCoMan
middleware has been developed to operate on top of DiPS+, we briefly present this
architecture’s characteristics in the next subsection.
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(b) DiPS+ composition

Figure 2.9: The DistriNet Protocol Stack (DiPS+).

2.2.5 DiPS+ protocol stacks

DiPS+ has been developed at the DistriNet labs to increase flexibility in protocol
stack software. This has resulted in a software architecture tailored to build highly
reconfigurable protocol stacks, as well as a component framework that enforces this
architecture [99]. In the remainder of this section, we briefly discuss how DiPS+
has been prepared for compositional adaptation by implementing the three key
enabling technologies listed in Section 2.2.3, which included separation of concerns,
component-based design, and computational reflection.

Separation of concerns

Separation of concerns has been one of the key technologies underpinning DiPS+.
In short, DiPS+ stacks have been decomposed into self-contained components that
each encapsulate a single protocol function, such as packet fragmentation, com-
pression, routing, header parsing and construction, etc. To illustrate this modular
decomposition, Figure 2.9(a) depicts the basic functionality of a simple DiPS+
router (as Matthijs presented in [90]). Each of these components has a specific
responsibility. The Out-Router component, for instance, will determine to which
interface outgoing packets should be forwarded. The In-Router component, in con-
trast, decides whether an incoming packet is for local delivery or whether it should
be forwarded. Additionally, the Fragmenter and the Reassembler components
encapsulate fragmentation support. This modular router decomposition enables a
developer to change fragmentation support without affecting the employed routing
functionality, and vice versa.
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DiPS+ component model

Conform to the philosophy of component based development, DiPS+ promotes
constructing protocol stacks through the composition of fine-grained, self-contained
components. In addition, because DiPS+ adopts the pipe-and-filter architectural
style, such a composition results from plugging components one after another (as
illustrated in Figure 2.9(b)). Once a protocol stack is composed that way, it can
process packet flows passing by.

To support this pipe-and-filter based composition, DiPS+ components are devel-
oped as a core (which encapsulates the component’s specific behavior) surrounded
by communication ports. These ports are implemented as “packet-receivers” (PR)
and “packet-forwarders” (PF), which represent a component’s entry and exit ports,
respectively (see Figure 2.9(b)). Packet-receivers thus accept packets and deliver
them to the component’s core for being processed. Packet-forwarders, in contrast,
deliver packets to the packet-receivers of other components in the flow. As a re-
sult, composing multiple components boils down to connecting the involved packet-
forwarders and packet-receivers to each other (as illustrated in Figure 2.9(b)).

In addition, all packet-receivers share a fixed interface: incomingPacket(Packet
p). As Fielding states in [44], restricting the interfaces of components in a pipe-and-
filter architecture allows independently developed components to be arranged at will
to form new applications18. This is a major advantage concerning flexibility, because
it allows compositions to be adapted without the need for checking compatibility
when connecting components to each other. The router composition depicted in
Figure 2.9(a), for instance, can easily be rearranged such that fragmentation will
be bypassed, or compression support is added19.

Finally, when a DiPS+ component encapsulates different processes, it provides
separate communication ports for each of these processes. The component in Fig-
ure 2.10, for instance, exposes separate communication ports for the compression
and decompression process that it encapsulates. This enables to distinguish between
packet-flows that are directed to specific component processes (such as packets that
are to be compressed and packets that must become decompressed). Note that
separate ports for each process that a component encapsulates was not provided by
the original DiPS+ architecture (presented in [97, 99]). We extended the DiPS+

18Fielding defines such a pipe-and-filter architecture style with the constraint that all filters
must have the same interface as a uniform pipe-and-filter style [44]

19The use of a fixed communication interface, however, limits the interaction between com-
ponents. Communication between DiPS+ components, for instance, is restricted to forwarding
packets towards the next component in the pipeline. As a work-around, DiPS+ components can
also communicate with each other indirectly through blackboard interaction. In general, the black-
board interaction style is characterized by an indirect way of passing messages from one component
to another, using an in-between data source (blackboard) [99]. DiPS+ implements this indirect
interaction by enabling components to annotate packets that flow though the pipeline with meta-
information. Hence, all “downstream” components (meaning all components these packets will
flow through) can retrieve this meta-information independently. The main advantage of this ap-
proach is that it preserves the independence of DiPS+ components: components that consume
specific meta-information do not have to know the producer of these data (and vice versa) [99].
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Figure 2.10: Separate communication ports for all processes that a component
encapsulates.

component model afterwards to support dynamic reconfiguration more easily.

Reflection

Finally, DiPS+ supports reflection as well besides separation of concerns and compo-
nent-based design (as illustrated in Figure 2.9(b)). DiPS+ clearly separates base-
level functionality from meta-level objects. This has resulted in a “data plane”,
which contains the regular protocol stack functionality, and a “management plane”,
which controls among others adaptive load management support [98]. In addition,
at the base-level, a component’s packet-receivers and packet-forwarders are sepa-
rated from its specific behavior, and thus offer indirections that can be used to
manipulate interactions between components. This enables “policy” objects to in-
tercept packets that enter or leave a component. These intercepted packets are then
delegated to a number of pipelined “management modules”, which are employed by
meta-objects (such as the adaptive load management support) to monitor and adapt
the packets flowing through the protocol stack. These policy-objects thus define the
MOP that connects the data plane (base-level) and the management plane (meta-
level) to each other.

2.3 Dynamic change management

The previous sections have defined how this dissertation relates to programmable
networks and dynamic software reconfiguration research. To complete this position-
ing, this section focuses on dynamic change management, and delimits the scope of
our research in this context. As will be clarified in the remainder of this section,
this scope encompasses customizable change management support.

As already mentioned in the introduction, dynamic software reconfiguration is
only beneficial when the reconfiguration process is implemented in an effective and
efficient way, such that the costs and risks it introduces do not outweigh those
associated with shutting down and restarting the system. This requires for the
reconfiguration process to preserve the correct functioning of the system (effective-
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Figure 2.11: Dynamic change management support

ness), and to minimize the overhead it causes (efficiency). When implementing
dynamic reconfiguration support, however, developers face several issues that have
a direct bearing on both concerns, such as choosing the most appropriate recon-
figuration mechanism or the most efficient approach to preserve consistency. This
makes the ad hoc implementation of a dynamic reconfiguration often a complex
challenge.

Dynamic change management support seeks to reduce the complexity of ad hoc
dynamic software reconfiguration in a generic and application independent man-
ner [79, 139, 104, 19, 11, 59]. As illustrated in Figure 2.11, dynamic change man-
agement support encapsulates predefined reconfiguration functionality, and clearly
separates it from the application that will be reconfigured. This enables to reuse
reconfiguration functionality for various applications, on condition that the latter
meet some predefined architectural requirements imposed by the reconfiguration
functionality.

To achieve its objectives, dynamic change management support must comply
with a number of requirements. These requirements (which are derived from the
requirements that Kramer and Magee have listed in [79]) relate to the effectiveness,
efficiency, and complexity of dynamic software reconfiguration.

• Change specification should be declarative. To conceal the complexity inherent
in dynamic software reconfiguration, dynamic change management support
should only require from its users to specify what reconfiguration it must exe-
cute, instead of also defining how a specific reconfiguration must be executed.
As illustrated in Figure 2.11, change management support thus only requires
to specify a transfer from the current configuration (conf i) to a resulting
configuration (conf i+1). Using declarative specifications to define this transi-
tion leaves control about the execution of the reconfiguration to the employed
change management support [79].



34 Background and scope

• Changes should be specified in terms of the software structure. Dynamic
change management support should help developers to identify what must
be changed. Because the description of a software structure provides a clear
means for both software comprehension and construction, it seems appropri-
ate that software changes should be specified in terms of its structural primi-
tives [79]. A reconfiguration of a component based system, for instance, should
be expressed in terms of component creation/deletion and connection/discon-
nection, since these are the primitives to define a composition.

• Change specifications should be independent of the algorithms, protocols and
states of the application. To provide generic change management support, the
employed reconfiguration process should be independent of the application
that will be reconfigured. This separation of concerns enables to reuse change
management support for various applications. When the reconfiguration pro-
cess depends on application specific aspects, for example to check whether
or not the application has reached a consistent execution state, these aspects
must be abstracted into generic application properties.

• Changes should leave the system in a consistent state. To perform reconfig-
urations effectively, change management support controls the reconfiguration
process to prevent it from compromising the correct functioning of the sys-
tem. After a reconfiguration the system must be able to continue processing
normally, rather than progressing towards an error state [79].

• Changes should be executed efficiently. Finally, change management support
controls the efficiency of the reconfiguration process. As Warren and Som-
merville state in [139], reconfiguration efficiency can be decomposed into three
distinct parts. First, the time between reconfiguration request and execution
should be minimal. Second, the time taken to perform the requested recon-
figuration should be minimal. Third, application disturbance with respect to
the number of components affected by reconfiguration should be minimal.

Except for the framework of Hillman and Warren [59], existing dynamic change
management systems [80, 139, 101, 104, 19, 11, 31] typically conform to the black-
box philosophy. In particular, these systems encapsulate a single and fixed recon-
figuration algorithm. These systems therefore lack the ability to customize the
reconfiguration process such that it may perform better in a specific context, for
example by exploiting some service properties or reconfiguration semantics.

We argue that in the context of programmable networks – which by nature
have to satisfy stringent performance requirements – this black-box philosophy con-
strains the efficiency of dynamic software reconfiguration. To limit the overhead
that a reconfiguration causes, one must be able to optimize the reconfiguration pro-
cess whenever possible. To illustrate this, consider the dynamic replacement of a
compression service that covers two neighboring programmable nodes with a new
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version. To preserve the correct functioning of the network during this reconfigu-
ration, the local replacement operations on both nodes must be coordinated20. If
this is not the case, packets processed by the old compression component may not
be decompressed correctly when the neighboring node is already upgraded to use
the new decompression component.

When an existing compression service becomes replaced by a new version that
is compatible with the old one, in contrast, the reconfiguration of both nodes does
not have to be coordinated anymore to preserve consistency. To be precise, when
both the old and new decompression component can process packets that originate
from the old as well as from the new compression component, consistency is always
implicitly preserved during the reconfiguration. Both nodes therefore can safely be
upgraded independent from each other, thus reducing the overhead a coordinated
reconfiguration causes.

This optimization, however, cannot be carried out when the employed
change management support conforms to the black-box philosophy. We
therefore argue that in the context of programmable networks, change
management support must be customizable such that the employed re-
configuration algorithm can be tailored to exploit service properties and
reconfiguration semantics. From this perspective, we present the NeCo-
Man middleware as customizable change management support for out-
of-band active networks.

2.4 Network service characteristics

The previous sections have presented the scope of this dissertation in the area of
programmable networks, dynamic software reconfiguration, and dynamic change
management research, respectively. This section elaborates on the characteristics
of the network services that we target for dynamic reconfiguration.

Programmable networks have served to develop a wide variety of network ser-
vices, including application services [141, 12], resource management [29], and net-
work management [144, 120, 43]. These services differ, among others, by the ar-
chitectural domain they focus on, such as QoS control, management, transport,
etc. This dissertation concentrates on network services that target data transport:
such services operate on data packets flowing from a source to a sink node. Recall
that the services we focus on are targeted at strata 2 and 3 of Coulson’s reference
architecture – that is, they can define in-band functions or application services21.
In addition, we support dynamic reconfiguration of both isolated and distributed
services. The remainder of this section elaborates on the characteristics of these
network services.

20that is, to preserve consistency as discussed in Section 2.2.2
21See Section 2.1.4
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2.4.1 Isolated network services

Isolated network services operate independently on data packets. These services are
encapsulated by self-contained components, which do not require cooperation with
other components. An example of such a self-contained protocol stack component
is a filter component to relieve a congested node. An additional example includes
a packet-scheduling component that accepts packets through different inports, and
stores them in associated buffers. The scheduling process then iterates over these
buffers, picks out packets according to the employed scheduling algorithm, and
delivers them to the component’s single outport.

Besides being self-contained, these isolated service components are also reactive.
They only react in response to packets that must be processed, and therefore will
never autonomously initiate their service execution. Note, however, that these
reactive components may still contain active objects to execute their services22.
The packet-scheduling component, for instance, executes its scheduling behavior in
a new thread.

2.4.2 Distributed network services

In addition to isolated network services, we also target dynamic reconfiguration of
distributed network services. Examples of distributed services that are typically
provided by protocol stacks include encoding, compression, fragmentation, reliabil-
ity, and encryption. These services have the following characteristics in common.

Distributed dependencies

These services are represented by a pair of tightly-coupled distributed components
(as illustrated in Figure 2.12). Both service components need to collaborate for the
service to perform correctly. The distributed dependencies between both collabo-
rating components are formalized by the employed communication protocol, which
specifies when a service component invokes its counterpart. To illustrate this, the
protocol of a TCP-like reliability service23 denotes that both service components
mutually depend on each other to establish a connection, to transmit data packets
reliably and finally to terminate the connection (see Figure 2.12(a)). The protocol
that an MPEG software encoding service uses, in contrast, specifies that the en-
coding component expects from the decoding component to restore encoded data
packets into their original state (see Figure 2.12(b)).

22An active object owns its own thread to perform certain tasks asynchronously.
23Note that this TCP-like service is used only by way of illustration. Its protocol description is

not fully RFC-compliant.
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(a) Protocol of a TCP-like service
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(b) Protocol of an MPEG software encod-
ing service

Figure 2.12: Distributed dependencies formalized by the communication protocol.

Client-server based collaboration

The distributed network services we focus on apply a client-server collaboration
model. Corresponding to [13], we define client-server collaboration as follows:

The client-server model defines the relationship between two collaborating
processes. A client process makes a service request that triggers a reac-
tion from the server process. Stated differently, a client process initiates
service activity, while a server process waits for requests to be made and
then reacts to them.

The client process thus initiates the execution of the employed communication
protocol, while the server process reacts to client requests according to this proto-
col. This collaboration model applies to many distributed network services, such
as for instance the TCP-like service and the MPEG software encoding service (see
Figure 2.12). The retransmission and encoding components of these services (host-
ing the client processes) invoke the acknowledgement and decoding components
(providing the server processes), respectively, to initiate service activity. Note that
both collaborating service components can accommodate client and server processes
simultaneously. For instance, when an MPEG software encoding service covers a
bidirectional communication link, both service components employ a server process
to decode encoded data packets arriving from the network, as well as a client process
to encode data packets that will be transmitted to the decoding node.

Reactive behavior

Similar to isolated service components, all distributed service components are re-
active – that is, they only react in response to external service requests. Since a
server process waits for requests to be made and then reacts to them, this process
is inherently reactive. In addition, the client processes of the services we focus
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Figure 2.13: Many-to-many deployment model for distributed network services.

on are reactive as well. They will never autonomously initiate the execution of a
communication protocol for a purpose other than processing external requests (for
example to transmit encoded data packets). Note that although all service compo-
nents are reactive, they may still contain active objects. As an example, we refer
to a timer object that initiates packet resends in response to external requests for
reliable transmission.

Asynchronous buffered communication

Both collaborating service components communicate by asynchronous buffered mes-
sage passing. These components invoke each other by sending packets over the
network asynchronously – that is, without delaying their activity until the packets
they transmitted have arrived. The network capacity hence conceptually represents
a shared buffer that is used by both collaborating service components to communi-
cate.

Many-to-many service composition

Although we deal with distributed services that conceptually consist of two collab-
orating components, multiple instances of both service components might have to
be deployed to use this service correctly in a concrete network setup. For instance,
suppose an MPEG software encoding service is employed to accommodate a slow
wireless sub-net in a programmable home network, as illustrated in Figure 2.13. To
maintain correct network operation, all packets that enter and leave this sub-net
must be encoded and decoded, respectively. This involves deploying multiple en-
coding and decoding components, all of them providing part of the same service.
When the service is used to cover a unidirectional communication link between two
neighboring nodes, in contrast, one single encoding and decoding component are
sufficient.
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Figure 2.14: Protocol stack composition
of two nodes hosting a reliability service.
The black filled rectangles graphically
symbolize the components’ inports. The
small empty rectangles, in contrast, cor-
respond to the components’ outport.
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Figure 2.15: Service-internal and
service-external ports of both reliability
components.

2.5 Service-external and service-internal commu-
nication ports

When distributed network services are involved, we refine the employed component
model by differentiating between service-external and service-internal communica-
tion ports24. To explain this in more detail, we first present the composition of a
(distributed) reliability service. Note that this service will also be used through the
remainder of this text to illustrate various aspects of dynamic software reconfigu-
ration.

As depicted in Figure 2.14, this reliability service consists of a retransmission
component R that collaborates with an acknowledgement component A. When a
data-packet must be transmitted reliably, it becomes delivered to the data-inport
of R. Component R then stores a copy of this data-packet in its retransmission
queue, attaches a sequence number to the packet and starts counting down to
retransmission. Next, R delivers this packet (and all subsequent resends) to the
lower layer of the protocol stack via its data-outport. When this packet arrives at
the destination node, the lower layer of that node dispatches it to the data-inport of
A. If the packet arrived correctly and is not a duplicate resent packet, A delivers it to
the upper layer via its data-outport and always returns an acknowledgement packet
to the sending node. This ack-packet reaches the lower layer via A’s ack-outport.
Once the ack-packet reaches the sending node, it is delivered to the ack-inport of R.
In response to this, R removes the acknowledged data-packet from its retransmission
queue.

Now let us focus on the communication ports. According to our component
model, client and server processes use service-internal ports to exchange packets

24Again this was not provided by the original DiPS+ architecture.
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Figure 2.16: Two collaborating components, each encapsulating a client and a server
process.

during the execution of the employed communication protocol. Examples of such
server-internal ports include the data-outport and ack-inport of R, and the data-
inport and ack-outport that component A provides. These ports are connected
indirectly (that is, over the network as illustrated in Figure 2.15) and are used by
the retransmission and acknowledgement process to exchange data and ack-packets.
Service-external ports, in contrast, connect the associated processes with other pro-
tocol stack components that do not participate in the execution of communication
protocols. Examples of such ports include R’s data-inport and A’s data-outport.

Note that a client process does not use service-external outports, and a server
process does not provide service-external inports (as illustrated in Figure 2.16). This
is because (according to the applied collaboration model) a client process invokes
only a collaborating server process (so as to execute a communication protocol).
Since client processes do not invoke other processes, they do not expose service-
external outports. In addition, a server process reacts only to invocations that are
sent by its client process and not to requests initiated by other components. Hence,
server processes do not employ service-external inports. Besides, note also that
client and server processes on the same node will never collaborate with each other,
but only with processes located on other nodes.

Finally, note that the employed component model does not distinguish between
service-external and service-internal ports for components that encapsulate isolated
network services. Because these components are self-contained, they contain only
processes that do not collaborate with other ones to complete a service. Hence, the
distinction between client and server processes, as well as between service-external
and service-internal communication ports becomes irrelevant.

2.6 Requirements and motivation

To conclude this chapter, we bring together the research topics that have been
discussed in the previous sections, and deduce the main objective that has driven the
research presented in this dissertation. This objective encompasses the development
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of:

customizable change management support
for

dynamic compositional adaptation
of

local and distributed network services
in

pipe-and-filter based out-of-band active networks

This objective has resulted in the development of the NeCoMan (Network reCon-
figuration Management) middleware, which operates on top of pipe-and-filter based
out-of-band active nodes25, and conducts local and distributed recompositions of
these nodes’ software architecture. The novelty of this middleware is in its ability to
customize the reconfiguration process, taking into account both the characteristics
of the network services that are involved and the reconfiguration semantics. By
packaging this reconfiguration complexity in a middleware, we aim to make efficient
and effective dynamic reconfiguration of programmable networks less complex and
error prone. In the remainder of this subsection, we list four requirements (relating
to the effectiveness, efficiency, and complexity of dynamic software reconfiguration)
that NeCoMan must fulfill to meet its objective. As we clarify later on, these re-
quirements have an effect on NeCoMan’s reconfiguration algorithm as well as on its
design, and therefore will run as a thread through the next chapters.

2.6.1 Correct reconfigurations

First and most important, the NeCoMan middleware must prevent a reconfigura-
tion from compromising the correct functioning of the network and its services. A
dynamic reconfiguration that causes failures or inconsistencies can be more harmful
to the network than accomplishing the reconfiguration off-line. NeCoMan there-
fore has to ensure the network’s consistency in the course of a reconfiguration. As
discussed in Section 2.2.2, this involves (1) reaching mutually consistent execution
states among the service components and the rest of network, such that after a
reconfiguration the network can continue operating normally rather than progress-
ing towards an error state, and (2) providing a correct service composition at each
moment in time during the reconfiguration process to preserve structural integrity.

2.6.2 Limited reconfiguration overhead

The end-users of programmable networks are mainly concerned with the perfor-
mance and the availability of the network, especially when using multi-media or

25Although the current prototype has been validated on top of DiPS+, NeCoMan seeks to enable
dynamic reconfiguration of various pipe-and-filter node architectures, including the ones listed in
Section 2.2.4
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(soft) real-time applications. These applications impose strict quality requirements
on the communication network that they employ, so as to guarantee a certain well-
defined level of performance. To meet these quality requirements, the overhead
caused when recomposing programmable nodes must be kept to a minimum. Con-
sequently, NeCoMan must enable to execute dynamic reconfigurations as trans-
parently as possible. At best, the end-users should not be able to detect that a
reconfiguration has occurred inside the network – that is, they should not experi-
ence unexpected delays or service disruptions.

2.6.3 Limited openness

As already stated in Section 2.3, we argue that (in the context of programmable
networks) dynamic change management support must be customizable such that
each reconfiguration can be tailored to exploit service properties and reconfigura-
tion semantics. This requires to open up change management support such that the
reconfiguration algorithm can be adapted. Because implementing a safe reconfigu-
ration algorithm that causes minimal reconfiguration overhead can be very complex
and error prone, however, we strongly believe that this “openness” should be lim-
ited. Besides the specification of the structural changes that must be executed,
a reconfiguration description should only contain a declarative specification of the
service characteristics and reconfiguration semantics. Based on these specifications,
the NeCoMan middleware should be able to carry out a tailored reconfiguration.

2.6.4 Reusability

Finally, because change management support seeks to promote reusability, NeCo-
Man should be decoupled from the execution environment of the programmable
nodes that will be reconfigured. As we further discuss when comparing related
research in Chapter 8, other frameworks and architectures that conduct dynamic
software reconfiguration in programmable networks are tightly coupled to a spe-
cific node execution environment. The architecture that Chen and his colleagues
presented in [30], for instance, is tightly coupled to Cactus [143], a framework for
constructing adaptive protocol stacks. This makes it far from trivial to employ
this architecture on top of other protocol stack frameworks, such as Click [75],
Netkit [36], DiPS+ [97, 99], and the framework of Lee and Chang [82],

2.7 Detailed overview

As illustrated in Figure 2.17, the remainder of this dissertation is structured as
follows. Chapters 3 and 4 target local reconfigurations, which involve the addition,
replacement, and removal of service components that reside on one node. These
components may belong to isolated as well as to distributed services. Chapters 5
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Figure 2.17: Overview of the next chapters.

and 6 then focus on reconfigurations where the unit of adaptation is a distributed
network service rather than a local protocol stack adaptation.

More in detail, Chapters 3 and 5 each present two basic reconfiguration algo-
rithms that NeCoMan uses for conducting local and distributed reconfigurations,
respectively. These basic reconfiguration algorithms seek to reconfigure an extensive
set of services, and thus serve the same purpose as the single algorithm that a black-
box reconfiguration system typically employs. Besides, NeCoMan also incorporates
a set of customizations to these local and distributed reconfiguration algorithms,
which are discussed in Chapters 4 and 6, respectively. These customizations opti-
mize and tailor the employed reconfiguration algorithm by switching the order in
which some reconfiguration actions are executed, and by discarding actions that are
redundant for particular reconfigurations.

Chapter 7 then presents the design of the NeCoMan middleware and evaluates
the reconfiguration overhead that NeCoMan brings about. Next, Chapter 8 situates
our approach to related research in the area of programmable networking. Finally,
Chapter 9 summarizes the main achievements presented in this dissertation, and
identifies future research tracks that spin off from this research.
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Chapter 3

Local reconfigurations

In this chapter we elaborate on local recompositions in pipe-and-filter node ar-
chitectures. Depending on the affected service, these recompositions may involve
components that encapsulate isolated network services, as well as components that
belong to a distributed network service. The remainder of this chapter explains
how NeCoMan adds, replaces, or removes these different network service compo-
nents, taking into account the four requirements that it must fulfill to achieve its
objectives. As we explained in detail in Section 2.6.1, these requirements include
consistency preservation, limited reconfiguration overhead, limited openness, and
reusability.

This chapter is subdivided into two parts. The first part seeks to prepare the
reader to clearly understand NeCoMan’s reconfiguration algorithms. Because con-
sistency preservation is a very important requirement for NeCoMan to satisfy, Sec-
tions 3.1 and 3.2 specify how to preserve structural integrity and mutually consistent
execution states when performing local recompositions in pipe-and-filter node ar-
chitectures. Next, Section 3.3 describes the functionality that a node architecture
must provide to assist NeCoMan in carrying out a reconfiguration. Section 3.4
then presents a pseudo-formal notation to denote all “reconfiguration conditions”
that a recomposition middleware like NeCoMan must fulfill to perform a correct re-
configuration. These reconfiguration conditions define the (partial) order in which
reconfiguration actions must be executed.

The second part of this chapter focuses on NeCoMan’s two local reconfiguration
algorithms. The first one of these algorithms conducts recompositions that involve
components of a distributed network service. Section 3.5 presents this algorithm
and indicates that it fulfills all required reconfiguration conditions. After that,
Section 3.6 explains NeCoMan’s second local reconfiguration algorithm. In contrast
to the first algorithm, this second algorithm conducts the addition, replacement,
and removal of isolated network service components. Section 3.6 also indicates that
this second algorithm meets all required reconfiguration conditions as well.

45
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Figure 3.1: Consistency preservation when executing local recompositions in (uni-
form) pipe-and-filter based network architectures

Finally, Section 3.7 concludes this chapter by checking both algorithms against
the four requirements that NeCoMan must fulfill to achieve its objectives.

3.1 Structural integrity

For a dynamic reconfiguration of programmable nodes to be effective, consistency
must be preserved such that after a reconfiguration the network can continue op-
erating normally rather than progressing towards an error state. As discussed in
the previous chapter, this involves preserving both structural integrity and mutu-
ally consistent execution states (see Figure 3.1). This section elaborates on the first
of both requirements, and discusses how to maintain referential integrity, interface
compatibility, and dependency preservation when recomposing pipe-and-filter based
node architectures. We illustrate all this with the replacement of the old retrans-
mission component Rold by a new version Rnew. Figure 3.2 sketches the protocol
stack composition of two nodes hosting the reliability service both before and af-
ter carrying out this reconfiguration. Finally, note that Table 3.1 summarizes this
section as backing.

Referential integrity

A first requirement to preserve structural integrity includes maintaining referential
integrity (as depicted in Figure 3.1). After recomposing a programmable node, all
affected references must be redirected consistently such that (1) no references are
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Figure 3.2: Protocol stack composition of two nodes hosting a reliability service,
both before and after replacing the retransmission component.

broken and (2) only the new composition will be invoked to process service requests.
Conducting a correct compositional adaptation thus requires to unbind and bind
all affected components in an atomic manner.

To illustrate this, replacing Rold with a new version Rnew involves reconnecting
all affected ports such that packets which were originally directed to Rold’s inports
now become delivered to the inports of Rnew. Besides, the outports of both com-
ponents must be (re)connected as well to prevent breaking a correct composition.
Figure 3.2(b) depicts these linking and unlinking operations by black bold and gray
bold connections, respectively. To preserve structural integrity, these reconnections
must be executed atomically.

Note that only local references must be controlled explicitly when recomposing
pipe-and-filter node architectures. This is because the client and server processes of
a distributed network service do not reference each other directly. Instead, packets
processed by a client process (such as the retransmission process) reach the com-
ponent that encapsulates the collaborating server process (the acknowledgement
process) indirectly through the routing support that the network and the node ar-
chitectures provide. A local recomposition that involves components of a distributed
service therefore only has to preserve local referential integrity. Maintaining dis-
tributed referential integrity must be covered at all times by the employed routing
support.

Interface compatibility

Besides referential integrity, interface compatibility must be dealt with as well to
preserve a network’s structural integrity. According to Liskov’s substitution prin-
ciple, when replacing a component with a new version the interface definition of
the latter must satisfy that of the original component. Replacing Rold with a new
version that exposes an incompatible data-inport, for instance, obviously makes it
impossible to correctly recompose the node hosting this component. Hence, it is
the network administrator’s responsibility to make sure that interface compatibility
can be preserved.



48 Local reconfigurations

isolated service com-
ponents

distributed service compo-
nents

referential
integrity

rebind in and outports in an atomic manner

interface
compatibility

new components must offer (at least) all inports that the old
ones provide

distributed
dependencies

N/A 1. component replacement only
2. new component must imple-
ment same communication proto-
col

Table 3.1: An overview on how to maintain referential integrity, interface com-
patibility, and distributed dependencies when recomposing uniform pipe-and-filter
based node architectures.

Note that this requirement also applies to recompositions that involve adding or
removing components from a pipeline (instead of replacing a component by a new
version). In that case, the interface of the old and new neighboring components
must be compatible.

Dependency preservation

Additional to maintaining interface compatibility and referential integrity, all dis-
tributed dependencies between collaborating service components must be preserved
as well. These dependencies are formalized by the employed communication pro-
tocol, and exercise restraints on the recomposition operation that can be carried
out. To be precise, a local recomposition that involves components of a distributed
service is restricted to component replacement only. Besides, the new component
must implement the same communication protocol to protect a recomposition from
jeopardizing the cooperation with other service components that have not changed
and thus still expect the old component to process their invocations. Removing
Aold or replacing Rold with a new version that implements a different communica-
tion protocol, for instance, obviously breaks the distributed dependencies between
both tightly-coupled components.

Restricting the recomposition operation to component replacement only is not
required when isolated network services are involved, such as a packet filter. Because
these services are self-contained, evidently no distributed dependencies have to be
preserved. Components that encapsulate such isolated services therefore can be
added, replaced, or removed from programmable nodes without taking into account
distributed cooperation with other components.
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3.2 Mutually consistent execution states

A second requirement for safe dynamic reconfiguration of programmable nodes re-
lates to the execution state of the software components that will be recomposed.
After completing a recomposition, all network service components must be left in
a state that allows them to operate normally as if no reconfiguration had occurred.
This requires all affected components to reach a consistent execution state before
the actual recomposition is executed, and to preserve this state until the recomposi-
tion has completed. If this is not the case, a reconfiguration can break the invariant
of the affected network service1. This, in turn, compromises the correct functioning
of the applications that (indirectly) rely on this network service.

To illustrate this, consider replacing Rold without taking into account its ex-
ecution state. This clearly jeopardizes the correct functioning of the reliability
service. If Rold becomes replaced with Rnew while its retransmission queue still
contains packets, these packets get lost although there is no guarantee that they all
have reached their destination correctly. Hence, the invariant of the reliability ser-
vice (which defines that all transmitted packets certainly reach their destination)
becomes broken. This compromises the correct functioning of client applications
which assume that every packet will be transmitted correctly.

Besides, when replacing Rold without taking into account its execution state,
inconsistencies may also arise with respect to the sequence numbers that Rold at-
taches to packets before sending them to Aold. To filter out duplicate resends, the
acknowledgement component discards packets when their sequence number is be-
low the expected value2. The packets that Rnew sends, therefore, must have the
same sequence number as if they were transmitted by Rold. If Rnew starts counting
again from 0, for instance, Aold will interpret all newly arrived packets as duplicate
resends and discard them.

In general, to prevent a reconfiguration from leaving a software system in an
inconsistent execution state, most reconfiguration systems prescribe that a recom-
position can only be carried out when the software system is in a reconfiguration-safe
state (or shortly, a safe state) [11]. In the literature various approaches have been
presented to reach such a safe state. The remainder of this subsection describes
three of these approaches, which we adopted to drive network service components
to a reconfiguration-safe state.

3.2.1 Processing all accepted requests

In [11], Almeida et al. define that a software system is in a reconfiguration-safe state
when each affected component

1. is currently not involved in servicing accepted requests, and

1This invariant defines the conditions that always have to be fulfilled for the service to function
correctly.

2to be precise, when seqnr < (expected seqnb) mod (size of retransmission queue)
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2. will not be involved in servicing new requests until after completing the re-
configuration.

Reaching a safe state thus involves (1) intercepting all requests that are directed
towards the affected components and (2) monitoring these components until they
have processed all accepted requests.

This definition only applies to components which are always in a reconfiguration-
safe state once they are not processing requests. In the context of network software,
this is the case for components that encapsulate isolated network services. Because
these components are self-contained, they do not include results of a partially com-
pleted service after processing a single packet. A packet-scheduling component, for
instance, reaches a safe state when it has scheduled all buffered packets and is pre-
vented from receiving new packets during the reconfiguration. After this occurs, the
affected scheduling component can be replaced or removed without causing infor-
mation or packet loss, thus leaving the rest of the network software in a consistent
execution state.

Besides isolated network components, also a number of components that imple-
ment distributed network services reach a safe state once they have processed all
accepted packets. As an example we refer to both components of a compression
service, illustrated in Figure 3.3(a). These components do not include results of a
partially completed compression or decompression activity after processing a single
packet. Consequently, they can be replaced safely once they have processed all
accepted packets and new packets are prevented from invoking them.

3.2.2 Completing all accepted transactions

Network service components that need to exchange various requests to complete
a specific service are not necessarily in a safe state while not processing requests.
These components typically communicate according to a specific communication
protocol that formalizes a sequence of packet exchanges. During the execution of
a protocol-transaction3, every collaborating service component includes results of
a partially completed service. These intermediate results will get lost, however,
when such a stateful component becomes replaced while it is still participating in
ongoing protocol-transactions. Simply preventing these components from being in-
voked and monitoring them until they have processed all accepted packets therefore
does not suffice to reach a safe state. To illustrate this, replacing a retransmission
component when it has not yet received an acknowledgement for each packet in its
retransmission queue breaks its service-invariant. As an additional example, replac-
ing a defragmentation component when it has not yet received all fragments (and
therefore has not yet reassembled the original packet) will cause packet loss.

3As its name suggests, a “protocol-transaction” represents the execution of a communication
protocol. A protocol-transaction thus includes a predefined sequence of asynchronous packet
exchanges between collaborating service components. This is illustrated in Figures 3.3(b), 3.3(c)
and 3.3(d).
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(d) TCP-like service

Figure 3.3: These examples illustrate when collaborating network service compo-
nents reach a reconfiguration-safe state. The latter is depicted by gray shaded
blocks.

To prevent the replacement of such stateful components from jeopardizing the
correct functioning of the complete system, Goudarzi and Kramer have stated
in [101] that a reconfiguration-safe state is reached when the affected entities

1. are currently not involved in a transaction, and

2. will not participate in any transaction until after the reconfiguration actions
have terminated.

According to this definition, both the retransmission and the defragmentation com-
ponent reach a reconfiguration-safe state once they are not participating anymore
in ongoing protocol-transactions. For the defragmentation component this implies
that each fragment of the packet that is currently being reassembled has arrived,
and that the restored packet is delivered to the next component in the pipeline (as
illustrated in Figure 3.3(b)). The retransmission component, in contrast, is not par-
ticipating in ongoing protocol-transactions when each transmitted packet has been
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acknowledged (see Figure 3.3(c)). Consequently, monitoring support is needed to
check the execution state of these stateful components.

3.2.3 State transfer

Driving a stateful component to a reconfiguration-safe state by waiting until all ac-
cepted packets are processed (as Almeida proposes) or by waiting until the affected
component does not participate anymore in ongoing protocol-transactions (as pro-
posed by Goudarzi and Kramer) can be very time consuming. If a packet-scheduling
component contains large buffers that are filled with packets, then waiting for all
these packets to get scheduled significantly delays the reconfiguration. The same
holds for replacing a retransmission component. If Rold contains a large retransmis-
sion queue that is filled with unacknowledged packets, then waiting for the arrival
of every acknowledgement may have a major impact on reconfiguration efficiency.

As an alternative for monitoring until a consistent execution state comes about,
Hofmeister has proposed to deactivate a software component immediately [61]. Be-
cause this implies that information may get lost during the recomposition, additional
consistency recovery support is needed. This involves transferring the old compo-
nent’s execution state towards the new version. Consequently, a reconfiguration-safe
state is then reached once

1. the affected component is deactivated, and

2. the affected component will not be involved in servicing new requests until
after completing the reconfiguration, and

3. the old component’s execution state is captured and reinstated in the new
component.

For the packet-scheduling service this includes transferring all packets from the
old component’s buffers to the buffers of the new version. When replacing Rold,
consistency is restored when all unacknowledged packets as well as the sequence
number that is last used have been reinstated in Rnew.

3.3 Reconfiguration support for DiPS+

How to drive a network service component to a reconfiguration-safe state depends
on the semantics of that component. NeCoMan therefore does not enforce a safe
state by itself but instead expects the affected node to accomplish this.

In general, to support reuse we believe that a reconfiguration middleware must
be decoupled from all functionality that is specific to the network service or node
architecture. To be precise, a reconfiguration middleware should not contain node-
specific support to change a composition or to control the execution state of the
affected components. Instead, a reconfiguration middleware should only coordinate
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Figure 3.4: CuPS: node reconfiguration support for DiPS+

the execution of a reconfiguration, with this instructing the underlying node to carry
out these node-specific operations. Each node therefore has to provide dedicated
“reconfiguration support” to assist a reconfiguration middleware in carrying out a
reconfiguration.

The DiPS+ protocol stack initially did not have such reconfiguration support
at its disposal. We therefore developed the CuPS (Customizable Protocol Stacks)
platform to assist NeCoMan in dynamically recomposing DiPS+ protocol stacks (as
illustrated in Figure 3.4). CuPS has been published in [68, 69, 67, 99]. To clearly
understand the reconfiguration algorithms that NeCoMan employs, we briefly elab-
orate on the most relevant aspects of CuPS in the remainder of this section. To be
precise, Subsection 3.3.1 first presents an overview of the operations that CuPS pro-
vides. Next, Subsections 3.3.2, 3.3.3, and 3.3.4 elaborate on two of these operations
which serve to obtain a reconfiguration-safe state.

3.3.1 An overview of all reconfiguration operations

To promote reuse, the dependencies between NeCoMan and the underlying node-
specific reconfiguration support must be minimal. The latter therefore should only
provide a limited API. At the same time, however, this API must offer sufficient
operations to assist a reconfiguration middleware in (1) changing a composition and
(2) controlling a component’s execution state. As illustrated in Figure 3.4, CuPS
provides eight operations to accomplish this.

Four operations to change a composition

Four of these operations serve to change a DiPS+ protocol stack composition. As
Kramer and Magee proposed in [80], changes to a composition should be expressed
(declaratively) in terms of its structure. CuPS therefore offers a create, remove,
link, and unlink operation to assist a reconfiguration middleware in recomposing a
DiPS+ stack.

• Create. When a reconfiguration middleware invokes this operation, CuPS
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dynamically loads the specified component into the node’s protocol stack com-
position – that is, without binding its communication ports. As part of this
operation, CuPS also registers this new service component so as to control its
execution state later on during the reconfiguration.

• Remove. This operation accomplishes the opposite of what the create oper-
ation achieves. It deletes a disconnected component from the node’s protocol
stack composition, and deregisters this component from support that controls
its execution state.

• Link. This operation is responsible for binding a specific outport of compo-
nent A to a specified inport of another component B. When this operation
is called, CuPS registers the affected packet-receiver of component B to the
appropriate packet-forwarder of component A. This way both communication
ports become connected.

• Unlink. This operation disconnects a specified outport of component A from
an inport of another component B to which it is currently connected. This
involves removing the reference stored in component A’s packet-forwarder.

Four operations to control a component’s execution state

Besides assisting a reconfiguration middleware in changing a composition, a node’s
reconfiguration support must also enable to control a component’s execution state.
CuPS therefore offers the following four additional operations: intercept packets,
impose safe state, activate process, and release packets.

• Intercept packets. Each method presented in the previous section to reach
a safe state requires for intercepting packets – that is, to prevent these packets
from invoking the affected component. CuPS provides this functionality by
the “intercept packets”-operation.

• Impose safe state. Besides intercepting packets, additional support is
needed to drive a component to a safe state. This includes, among oth-
ers, monitoring the affected component until a safe state comes about and/or
transferring this component’s state-information towards its new counterpart.
This support is offered by the “impose safe state”-operation.

• Activate processes. To activate a new component, all its active objects (if
any) must be started. The “activate processes”-operation assists a reconfigu-
ration middleware in accomplishing this.

• Release packets. Finally, once a recomposition has completed, all inter-
cepted packets must be resumed. This is covered by the “release packets”-
operation.
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intercept packets impose safe state

processing all
accepted
packets

intercept packets
directed to all inports

1. monitor until all packets are
processed
(2. stop active objects)
(3. transfer remaining state)

completing
accepted
protocol-
transactions

if client process:
intercept packets di-
rected to service-external
inports

1. resume intercepted packets
and monitor processes until not
engaged in ongoing
protocol-transactions
(2. stop active objects)
(3. transfer remaining state)

if server process:
intercept packets di-
rected to all inports

state transfer
intercept packets
directed to all inports

(1. stop active objects)
2. monitor until idle
3. transfer execution state
(4. transfer remaining state)

Table 3.2: An overview of both operations that CuPS provides to intercept packets
and to impose a safe state. Depending on the adopted approach to reach a safe
state, the implementation of both operations differs.

Depending on the adopted method to reach a safe state, CuPS implements
both operations to intercept packets and impose a safe state in a different way. To
clearly understand the algorithms that NeCoMan employs, we elaborate on these
two operations in the remainder of this section. Subsection 3.3.2 first discusses the
implementation of both operations when a component reaches a reconfiguration-safe
state once it is not processing packets and is prevented from accepting new ones.
Subsection 3.3.3 then describes both operations when the affected component must
be monitored until it is not participating anymore in ongoing protocol-transactions.
Finally, Subsection 3.3.4 elaborates on the behavior of both operations when CuPS
deactivates the affected component immediately and recovers consistency by trans-
ferring its execution state. Table 3.2 presents an overview of these different imple-
mentations as backing.

3.3.2 Processing all accepted packets

In the most simple case, a component reaches a reconfiguration-safe state once it
is not processing packets and is prevented from accepting new packets. To bring
about this state, all packets that are directed towards the affected component must
be intercepted first. As discussed above, this is covered by the intercept packets-
operation that CuPS provides. Once packets are intercepted, a reconfiguration
middleware can instruct CuPS to impose a safe state, which involves
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1. monitoring this component until all accepted packets are processed,

2. stopping the activity of active objects (such as timers) once all accepted pack-
ets are processed, and

3. transferring remaining state-information from the old towards the new com-
ponent.

After that, the affected component can safely be removed without leaving the net-
work in an inconsistent state. We explain in the remainder of this subsection how
CuPS implements this scenario. As backing, Figure 3.5 models this scenario.

Intercept packets

When instructing CuPS to intercept packets, its “packet flow controller” holds up
packets at every packet-forwarder (outport) that is connected to a packet-receiver
(inport) of the affected component. To illustrate this, we refer to Figure 3.5. As de-
picted in this model, CuPS blocks both all outports of component A and one outport
of component B to intercept packets directed to the packet-scheduling component.
This approach for intercepting packets has two important advantages.

First, disturbance related to component deactivation during a reconfiguration
can be limited. Instead of deactivating all components that directly or indirectly
invoke the affected component (as proposed in [79]), CuPS only holds up pack-
ets at the outports of neighboring components. To be precise, only packet-flows
that are directed towards the affected component become intercepted. This way,
packet flows that neighboring components send out through other outports are not
(unnecessarily) blocked. As illustrated in Figure 3.5, packets sent directly from
component B to component C are not intercepted.

Second, holding up packets at a component’s communication ports promotes
separation of concerns. That is, a component’s functional behavior is decoupled
from support to intercept packets. Changing the way of holding up packets at the
outports does not interfere with existing component functionality and vice versa.
To illustrate this, CuPS supports to intercept packets by blocking the execution
thread in which an outgoing packet is executed. As illustrated in Figure 3.5, this
functionality is provided by CuPS’ “thread blocking support”. As an alternative,
CuPS’ “packet queueing support” intercepts packets by queueing all outgoing pack-
ets without interrupting their execution thread. Switching between both strategies
only involves adapting the policy objects of the affected outports.

Impose safe state: monitor until all packets are processed

Once all packets directed towards the affected component are intercepted, CuPS can
be instructed to impose a safe state. As a first step to accomplish this, CuPS’s “ac-
tivity monitor” observes the affected component until it has processed all accepted
packets (see Figure 3.5).
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Figure 3.5: This model illustrates how CuPS imposes a safe state over a packet-
scheduling component by monitoring until all accepted packets are processed

If a hot-swappable component does not contain active objects (such as a timer),
CuPS locates a simple counter at each of its inports when it becomes created. These
activity-counters monitor whether or not the affected component has processed all
accepted packets. They are incremented for each packet that reaches an inport,
and become decremented when the associated threads return. Consequently, when
a component’s activity-counters are zero, it is currently not processing packets.

When the affected component contains active objects, however, monitoring its
inports does not suffice to control whether or not this component is currently pro-
cessing packets. These active objects process packets in new execution threads.
The thread that delivers a packet to a component’s inport, therefore, will return
and decrement the associated activity-counter as soon as a new execution thread
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controls that packet. Activity-counters located at a component’s inports, therefore,
cannot monitor new threads which are initiated inside that component. To illustrate
this, suppose a safe state must be imposed over the packet-scheduling component
depicted in Figure 3.5. In that case, an activity-counter is correctly increased when
a packet enters the component. However, once that packet is stored in one of
the component’s buffers, the associated thread returns and decreases the activity-
counter. Consequently, there is no guarantee that the packet-scheduling component
has processed all packets when its activity-counters are zero. CuPS solves this by
monitoring both the packets that enter and those that leave the affected component
if the latter employs active objects (see Figure 3.5).

However, this excludes the option of new packets being created or existing pack-
ets being removed inside a component. For example, a fragmentation component
breaking up each packet into several fragments will never have an equal balance
between the amount of packets that enter and leave that component. Each com-
ponent, therefore, must keep track in this case of the amount of packets that it
creates and removes. The affected component then has processed all packets once
the amount of incoming, outgoing, created and removed packets is in balance. To
be precise, this balanced state is achieved when the number of entered and created
packets equals the number of packets that are removed or have left that component.

Impose safe state: deactivate all active objects

As a next step to impose a safe state, CuPS stops the affected component’s active
objects once this component has processed all accepted packets. To accomplish
this, DiPS+ component developers must provide specific support to deactivate
every active object that a component employs. This support is encapsulated in
a “(de)activation module”, and becomes invoked by CuPS’ “(de)activator” when
needed (see Figure 3.5). Note that this (de)activation module also encapsulates
functionality to start the component’s active objects, so as to assist CuPS also in
activating this component’s processes.

Impose safe state: state transfer

Finally, when the affected component contains execution state that goes beyond
the execution of a single packet, CuPS’ “state-transfer support” transfers this state
from the old towards the new DiPS+ component. Note that CuPS only captures
a generic state representation from the old component, and then reinstates this
generic state in the new component. Support to generate and interpret this generic
representation (again) must be provided by the component developer. As illustrated
in Figure 3.5, this support must be encapsulated in “state-transfer modules”, which
are responsible for converting component specific state-information into a generic
representation and vice versa [68].
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3.3.3 Completing all accepted protocol-transactions

When the affected component communicates according to a predefined communica-
tion protocol, simply preventing this component from being invoked and monitoring
it until all accepted packets are processed is insufficient to reach a safe state. When
this is the case, a reconfiguration-safe state can be achieved by (1) monitoring the
affected component until it is not participating anymore in ongoing transactions,
and (2) preventing this component from participating in new protocol-transactions
until after completing the reconfiguration4. This requires to first intercept (some
of) the packets directed towards the affected component. Once this is achieved,
imposing a safe state involves

1. resuming intercepted packets one by one until all accepted protocol-transac-
tions complete,

2. stopping the activity of active objects once all accepted protocol-transactions
are completed, and

3. transferring remaining state that results from (a history of) previously com-
pleted transactions.

We discuss in the remainder of this subsection how CuPS implements this sce-
nario. This scenario is illustrated in Figure 3.6 as backing.

Intercept packets

When instructing CuPS to intercept packets, it accomplishes this in the same way
as it does when adopting the previous approach to reach a safe state – that is, by
holding up packets at the outports of neighboring components. Note, however, that
in this case not necessarily all packet-flows directed towards the affected component
must be intercepted.

Depending on whether CuPS intercepts packets directed to a client or a server
process, it holds up different packet-flows. When a client process is involved, CuPS
only intercepts packets that invoke the service-external inports associated with that
process. Packets that enter this client process through a service-internal port are
sent by a collaborating server process and thus belong to an ongoing protocol-
transaction. Consequently, intercepting these packets will prevent ongoing protocol-
transactions to complete. In case of Rold, CuPS only intercepts packets that are
directed towards Rold’s data-inport (as illustrated in Figure 3.7). This suffices to
prevent the initiation of new protocol-transactions.

When a server process in involved, CuPS can intercept packets in two different
ways. A first approach includes preventing the associated client processes from
transmitting new packets (based on what is proposed in [80]). As we published
in [67], this method has two important disadvantages. First, it cannot be applied in

4as discussed in Section 3.2.2
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Figure 3.6: This model illustrates how CuPS imposes a safe state over a reassembling
component by waiting until the affected component does not participate anymore
in ongoing protocol-transactions.

a (hybrid) network where only the node hosting the affected server process supports
dynamic reconfiguration5. Second, this approach involves (unnecessarily) draining
the network pipe between client and server processes.

CuPS therefore holds up packet-flows of neighboring components (located on
the same node) to prevent a server process from accepting new service requests.
Note that in this case CuPS has to intercept all packet-flows directed to the service-
internal inports of the affected (server) processes6. When Aold is involved, for
instance, CuPS intercepts packets that are directed towards Aold’s data-inport (as
illustrated in Figure 3.8).

Impose safe state: resume intercepted packets until not engaged in on-
going transactions

Once packets are intercepted, CuPS can be instructed to impose a safe state. This
involves, among others, controlling the execution of accepted protocol-transactions

5for instance because the client processes belong to legacy protocol stacks, or because perfor-
mance issues exclude interfering in the operation of these stacks

6Recall that server processes expose no service-external inports, only service-internal inports.
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Figure 3.7: Intercepting packets di-
rected towards Rold
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Figure 3.8: Intercepting packets di-
rected towards Aold

until they complete. CuPS’ “transaction monitor” therefore observes the execution
state of the affected processes and, if needed, resumes packets one by one for these
protocol-transactions to complete.

We illustrate this with two examples. First, consider replacing the reassembling
component of a fragmentation service (see Figure 3.6). Recall that this component
encapsulates a server process. At the moment when CuPS intercepts packets that
are directed towards this component’s (service-internal) inports, there is no knowl-
edge about the state of ongoing protocol-transactions. CuPS therefore first checks
if each fragment of the packet that is currently being reassembled has arrived, and
if the restored packet is delivered to the next component in the pipeline. If this is
not the case, CuPS resumes intercepted packets one by one until this required state
comes about. As a second example, consider again replacing the old retransmission
component, which encapsulates a client process. This retransmission process is not
participating in ongoing protocol-transactions once every transmitted packet has
been acknowledged. When instructed to impose a safe state, CuPS monitors Rold’s
retransmission queue until it is empty. Note that in this case there is no need to
resume intercepted packets.

To assist CuPS in completing accepted protocol-transactions, DiPS+ component
developers must provide functionality that determines when a component reaches a
consistent execution state. This functionality is encapsulated by a “state-monitoring
module”, as illustrated in Figure 3.6. In case of the reassembling component, this
module controls if the component’s buffer (to store all fragments of a packet that
is being reassembled) is empty. The state-monitoring module of Rold, in contrast,
checks whether or not this component’s retransmission queue is empty. Besides,
the component developer must also specify which intercepted packet flows are to be
resumed in order to reach a safe state.

Impose safe state: deactivate all active objects

Once all accepted protocol-transactions are completed, CuPS stops the active ob-
jects of the affected processes. Similar as for the previous approach to reach a safe
state, DiPS+ component developers must provide (de)activation modules to assist
CuPS in accomplishing this.
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Impose safe state: state transfer

Finally, when the affected component contains state-information that goes beyond
the execution of a single protocol-transaction, CuPS transfers this state from the
old towards the new DiPS+ component. An example of such state-information
includes the sequence number that Rold has last used. Again, to enable state trans-
fer, DiPS+ component developers must provide support for converting component
specific state-information into a generic representation and vice versa.

3.3.4 State transfer

As a last approach to reach a reconfiguration-safe state, CuPS supports to deactivate
a component immediately instead of monitoring it until all accepted packets or
protocol-transactions are processed. Again this involves first intercepting all packets
that are directed to the affected component. After that, CuPS imposes a safe state
by

1. stopping the active objects of this component, and

2. monitoring this component until it is idle, and

3. transferring this component’s current execution state towards the new com-
ponent, and

4. transferring all remaining state-information towards the new component

In the remainder of this subsection we explain how CuPS puts this scenario into
practice. To illustrate this scenario, Figure 3.9 depicts the implementation of both
operations to intercept packets and to impose a safe state over Rold.

Intercepting packets

When instructing CuPS to intercept packets, all packets directed towards the af-
fected component will be held up. Similar as for the first approach to reach a safe
state, in this case CuPS makes no distinction between packet-flows that are directed
to service-internal or service-external inports.

Impose safe state: deactivate all active objects

Once all packets directed towards the affected component are intercepted, CuPS can
be invoked to impose a safe state. This involves first deactivating all active objects
that this component employs. Similar as for both previous approaches to reach a
safe state, CuPS invokes the component’s (de)activation module to accomplish this.
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Figure 3.9: This model illustrates how CuPS imposes a safe state by deactivating
the affected retransmission component and transferring its current execution state
to the new component.

Impose safe state: monitor until idle

Next, CuPS monitors the affected component until it is idle. Because its active
objects are already stopped, this component is idle once all (external) threads de-
livering packets to this component have returned. CuPS therefore monitors the
affected component by means of activity-counters that are located at the compo-
nent’s inports (as illustrated in Figure 3.9). These activity-counters are identical
to the ones that CuPS uses for monitoring a component until it has processed all
accepted packets. Hence, a component is idle if its activity-counters are zero.
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Impose safe state: transfer execution state and remaining state-infor-
mation

Finally, and most important, CuPS captures the state of the affected component
and reinstates this state in the new component. This way consistency will be re-
covered. Similar as for the previous approaches to reach a safe state, it is the
component developers’ responsibility to provide support for converting component
specific state-information into a generic representation and vice versa.

3.4 Notation for reconfiguration conditions

In the previous section we explained in detail how CuPS supports NeCoMan to reach
a reconfiguration-safe state. The complete execution of a reconfiguration, however,
involves extra actions besides reaching a reconfiguration-safe state. These include,
among others, loading a new component into the node’s reconfiguration support,
activating this component, removing the old version, etc. For a reconfiguration to be
effective, the execution of these actions must be coordinated correctly. Activating a
new component before it has been installed, for instance, obviously makes a correct
reconfiguration impossible.

For that reason we will define in the remainder of this and the following chap-
ters a number of “reconfiguration conditions” that NeCoMan must fulfill to carry
out a correct reconfiguration. These reconfiguration conditions define the partial
order in which the involved reconfiguration actions must be executed. Hence, they
(1) provide some guidance for the development of reconfiguration support, and (2)
allow to reason about the reconfiguration process. By checking NeCoMan’s recon-
figuration algorithms against these reconfiguration conditions, we can demonstrate
(in an intuitive way) the correctness of these algorithms.

The reconfiguration conditions that we identify in the remainder of this and
the following chapters express logical implication relationships (defined by the ←

operator) in which the right operand specifies the reconfiguration actions that must
be carried out before the actions specified in the left operand can be initiated7.
Reconfiguration condition C ← B ∧ A, for instance, expresses that reconfiguration
action C can only be initiated when actions B and (∧) A have completed. When
condition D ← B ∧A must be fulfilled as well, both reconfiguration conditions can
be combined into condition D∧C ← B∧A. The resulting reconfiguration condition
expresses that actions D and C can only be initiated when B and A have completed.
Besides, note that the ← operator is transitive8, antisymmetric9 and irreflexive10.

7Note that we did not use an existing calculus because of the simplicity of these reconfiguration
conditions, and because we do not intend to provide mathematical proof of the correctness of
NeCoMan’s algorithms.

8if C ← B and B ← A are fulfilled, then we can conclude that C ← A is fulfilled as well
9if B ← A and B 6= A then A ← B cannot occur

10B ← B cannot occur
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Furthermore, we use the ≡ operator to denote how a high-level action is com-
posed out of more fine-grained actions. Expression A ≡ EfF , for instance, specifies
that the execution of A includes actions E and (f) F. Consequently, this implies
that action A in expression C ← B ∧ A can be substituted for actions E and F ,
which results in C ← B ∧ E ∧ F .

Finally, note that we do not intend to use this notation for providing mathemat-
ical proof of the correctness of NeCoMan’s algorithms. Instead, we use this notation
to illustrate in a systematic manner how NeCoMan’s reconfiguration conditions have
come about.

3.5 Local reconfigurations of distributed services

The remainder of this chapter builds up to both basic algorithms that NeCoMan
uses for conducting local reconfigurations. One of these algorithms coordinates
the replacement of components that participate in a distributed network service.
The other one, in contrast, coordinates the addition, replacement, and removal
of isolated network-service components. Both general-purpose algorithms do not
take into account the characteristics of the affected services nor the reconfiguration
semantics. Instead, they each seek to safely reconfigure as many network services as
possible, and thus serve the same purpose as the single algorithm that a black-box
reconfiguration system typically employs.

This section builds up to the algorithm that NeCoMan uses for replacing a com-
ponent of a distributed service. First, Subsection 3.5.1 distinguishes four high-level
reconfiguration phases and defines the associated reconfiguration conditions. Next,
Subsection 3.5.2 presents for each reconfiguration phase the reconfiguration actions
to implement the behavior of these phases. Besides, this subsection also specifies
for each reconfiguration phase the reconfiguration conditions that NeCoMan must
fulfill to correctly execute these phases. Next, Subsection 3.5.3 completes this set
of reconfiguration conditions by refining the high-level reconfiguration conditions
defined in Subsection 3.5.1 in terms of the reconfiguration actions defined in Sub-
section 3.5.2. Finally, Subsection 3.5.4 presents the algorithm itself, and indicates
that this algorithm fulfills all required reconfiguration conditions.

3.5.1 High-level reconfiguration phases and conditions

NeCoMan’s algorithm to replace a component of a distributed service comprises the
following four phases:

• installing the new service component – by making the new component avail-
able on the affected node,

• activating the new service component – by bringing this new component into
use,
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• finishing the old service component – by driving the old component to a re-
configuration-safe state, and

• removing the old service component – by deleting the old component from the
affected node.

With respect to these reconfiguration phases, NeCoMan must satisfy the follow-
ing (high-level) reconfiguration conditions:

1. The new component can only be activated when it is made available on the
node where needed. We express this trivial safety condition as

ACnew ← ICnew (H.1)

where ACnew and ICnew represent activating and installing the new compo-
nent, respectively11.

2. The new component can only be activated safely when the old version has
reached a reconfiguration-safe state – that is, when the old component is
finished (FCold). Hence, the new component will be initialized in a state
which is consistent with the rest of the network before it is brought in use.
We express this reconfiguration condition as

ACnew ← FCold (H.2)

3. The removal of the old component (RCold) can only be initiated safely when
it has reached a reconfiguration-safe state. This gives network service com-
ponents which are being removed the opportunity to leave the network in a
consistent state. We express this reconfiguration condition as follows:

RCold ← FCold (H.3)

Both the above-mentioned reconfiguration conditions determine a partial order
in which the four high-level reconfiguration phases must be executed. This order is
depicted in Figure 3.10.

3.5.2 Detailed overview of each reconfiguration phase

We now zoom in on each of the four reconfiguration phases and identify the recon-
figuration actions that NeCoMan executes to implement these high-level phases (all
NeCoMan’s reconfiguration actions are summarized in Appendix A as backing). As
will be clarified soon, these reconfiguration actions each implement a specific recon-
figuration subtask, such as loading a new component into the node’s protocol stack

11High-level reconfiguration conditions are labelled (H.x)
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Figure 3.10: Partial ordering of NeCoMan’s (high-level) reconfiguration phases for
carrying out local reconfigurations of distributed services. According to the associ-
ated reconfiguration conditions, each of these high-level reconfiguration phase can
only be initiated safely if all its referring phases are completed.

composition, activating this component’s active objects, disconnecting the old com-
ponent from the protocol stack composition, etc. Note that these reconfiguration
actions have been chosen thoroughly. On the one hand, they should not be defined
at a too low abstraction level, since this has a negative effect on error-proneness and
comprehensibility. At the same time, however, their abstraction level should not
be raised too far either, as this compromises the ability to customize the employed
reconfiguration algorithms (for instance by discarding actions that are redundant
for a particular reconfiguration).

Besides, note that reconfiguration actions and reconfiguration operations rep-
resent different abstraction levels. A node’s reconfiguration support is expected to
provide the eight reconfiguration operations (specified in Section 3.3.1) to assist
a reconfiguration middleware in carrying out a reconfiguration. A reconfiguration
action, instead, combines the execution of a number of these reconfiguration oper-
ations to implement a specific reconfiguration subtask.

Installation phase

Let us start with the installation phase. The installation of a new service com-
ponent on the affected node involves loading and connecting this component into
the node’s protocol stack composition. Because the new component is not yet acti-
vated in this phase, only the bindings that will not cause service invocation on the
new component can be constructed – that is, only the new component’s outports
become connected. By partially connecting the new component into the protocol
stack composition during installation, we aim to limit the communication disruption
that a reconfiguration causes. When activating the new component, only bindings
that mediate packets to the incoming ports of the new component will have to be
created (instead of constructing all outgoing bindings as well). The duration of
the activation phase hence becomes slightly reduced. To illustrate this installation
phase, Figure 3.11 sketches the installation of Rnew. The black bold component
and bindings in this figure are created after completing this phase.
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Figure 3.11: Installation of Rnew
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Figure 3.12: Finishing of Rold

NeCoMan implements this installation phase by executing reconfiguration ac-
tions CCnew, LOext

new and LOint
new, where

• CCnew denotes a reconfiguration action responsible for loading the new ser-
vice component into the node’s protocol stack composition (which involves
invoking the node’s “create” operation), and

• LOext
new and LOint

new symbolize reconfiguration actions for linking this new com-
ponent’s service-external and service-internal outports, respectively (which
involves invoking the node’s “link” operation).

Hence, we express the implementation of this installation phase as12

ICnew ≡ CCnew f LOext
new f LOint

new (P.1)

Finally, it is obvious that NeCoMan can only instruct the affected node to bind
a component’s outports if this component has already been created. We express
this reconfiguration condition as

LOext
new ∧ LOint

new ← CCnew (3.1)

Finishing phase

The finishing phase involves driving the client and server processes of the affected
component to a reconfiguration-safe state. As we discussed in detail in Section 3.3,
this includes instructing the underlying node’s reconfiguration support to intercept
packets and to impose a safe state over each of these processes. NeCoMan there-
fore implements this finishing phase by executing reconfiguration actions IP client

old ,
ISSclient

old , IP server
old , and ISSserver

old , where

• IP client
old and ISSclient

old symbolize reconfiguration actions for intercepting pack-
ets and imposing a safe state over a component’s client processes (which in-
volve invoking the node’s “intercept packets” and “impose safe state” opera-
tions), and

12Representations of reconfiguration phases are labelled (P.x).
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• IP server
old and ISSserver

old denote the same actions but targeted at this compo-
nent’s server processes.

Hence, we express the implementation of this finishing phase as

FCold ≡ IP client
old f ISSclient

old f IP server
old f ISSserver

old (P.2)

To illustrate (part of) this finishing phase, Figure 3.12 depicts the execution of
IP client

old on the node hosting component Rold
13. Note that the lock symbolizes that

packets are intercepted at the neighboring components.
To correctly finish an old component, NeCoMan must coordinate the order in

which it executes IPold and ISSold. To be precise, NeCoMan must first instruct the
affected node to intercept packets before invoking it to impose a safe state. This
applies to finishing a component’s client processes as well as its server processes.
We denote this reconfiguration condition as follows

ISSclient
old ← IP client

old (3.2)

ISSserver
old ← IP server

old (3.3)

Activation phase

The activation phase includes instructing the underlying node to

• rebind all service-external and service-internal inports such that packets (which
were originally directed to the old component) will become mediated to the
new component after resuming the intercepted packet-flows, and to

• activate all client and server processes that the new component encapsulates,
and to

• resume packets that have been intercepted to finish the old component.

NeCoMan implements this activation phase by executing reconfiguration actions
LIint

old−new, LIext
old−new, AP client

new , AP server
new , RP client

new , and RP server
new , where

• LIint
old−new and LIext

old−new represent reconfiguration actions for rebinding all
service-internal and service-external inports, respectively (which involves in-
voking the node’s “link” and “unlink” operations),

13To be complete, for this example the execution of ISSclient
old

involves first monitoring Rold’s
retransmission queue until it is empty. After that, the node’s reconfiguration support stops Rold’s
retransmission timer, captures the last sequence number that Rold has attached to an outgoing
packet, and reinstates this information in Rnew.
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Figure 3.15: Removal of
Rold

• AP client
new and AP server

new symbolize reconfiguration actions responsible for ac-
tivating all encapsulated client and server processes (which involves invoking
the node’s “activate processes” operation), and

• RP client
new and RP server

new denote reconfiguration actions for resuming all inter-
cepted packets to invoke the new client and server processes (which involves
invoking the node’s “release packets” operation).

Hence, we express the implementation of this activation phase as

ACnew ≡ LIint
old−new f LIext

old−new f AP client
new f AP server

new f RP client
new f RP server

new

(P.3)

To illustrate (part of) this activation phase, Figure 3.13 depicts redirecting (in-
tercepted) packet-flows to the inports of component Rnew. This involves unlinking
Rold’s inports and simultaneously linking those of Rnew, which is symbolized by
grey and black bold connections, respectively. In addition, Figure 3.14 illustrates
the resuming of intercepted packets.

To correctly activate a new component, NeCoMan must coordinate the order in
which these actions are executed. To be precise, intercepted packets can only be
resumed once the new component’s processes are fully operational and prepared to
accept and service these packets. This implies that their active objects are started,
and that all inports involved have been bound correctly.

When targeted at client processes, this reconfiguration condition can be ex-
pressed as follows

RP client
new ← AP client

new ∧ LIint
old−new ∧ LIext

old−new (3.4)

In case of server processes, however, LIext
old−new becomes redundant. Because

a server process merely reacts to client processes, it only employs service-internal
inports. Hence, intercepted packets that will invoke the new server processes can
be released if the service-internal inports of the new component are bound, and
if the active objects of the affected server processes are started. We denote this
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reconfiguration condition as follows

RP server
new ← AP server

new ∧ LIint
old−new (3.5)

Removal phase

The removal phase involves both disconnecting the affected component from the
stack composition and deleting this component. This is illustrated in Figure 3.15,
where the grey bold component and bindings are removed after completing this
phase of the reconfiguration. Because the old component must be in a reconfi-
guration-safe state according to reconfiguration condition (H.3), removing the old
component does not compromise the correct operation of the network.

NeCoMan implements this removal phase by executing reconfiguration actions
DCold, UOext

old and UOint
old , where

• DCold denotes a reconfiguration action responsible for deleting the old ser-
vice component from the node’s protocol stack composition (which involves
invoking the node’s “remove” operation), and

• UOext
old and UOint

old symbolize reconfiguration actions for unlinking this com-
ponent’s service-external and service-internal outports, respectively (which
involves invoking the node’s “unlink” operation).

Hence, we express the implementation of this removal phase as

RCold ≡ DCold f UOext
old f UOint

old (P.4)

Finally, NeCoMan can only delete a component once its communication ports
(that is, both its inports and outports) are disconnected. We denote this reconfig-
uration condition as

DCold ← UOext
old ∧ UOint

old ∧ LIext
old−new ∧ LIint

old−new (3.6)

3.5.3 Refining high-level reconfiguration conditions

In the previous subsection we presented the reconfiguration actions that NeCo-
Man uses to implement the four high-level reconfiguration phases. In addition, we
also defined the reconfiguration conditions that NeCoMan must fulfill to correctly
execute these reconfiguration phases. We now combine all this with the partial
ordering of the four reconfiguration-phases defined in Subsection 3.5.1. As a result,
we achieve a more detailed partial ordering of the employed reconfiguration actions.
This ordering is illustrated in Figure 3.16.
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Figure 3.16: Preliminary partial ordering of NeCoMan’s reconfiguration actions
for carrying out local reconfigurations of distributed services. According to the
associated reconfiguration conditions, each of these reconfiguration actions can only
be initiated safely if all its referring actions are completed.

To complete this partial ordering, we must refine reconfiguration conditions
(H.1), (H.2), and (H.3) in terms of the reconfiguration actions presented in the pre-
vious subsection. Note that these refinements are all achieved in a similar way. For
each high-level reconfiguration condition, we first substitute ICnew, FCold, ACnew

and RCold for expressions (P.1), (P.2), (P.3), and (P.4), respectively. Next, we inves-
tigate if the resulting reconfiguration condition can be made less stringent without
compromising the correctness of the reconfiguration scenario (for instance because
part of this condition is already covered by another reconfiguration condition).

Installing new component before activation (H.1)

Let us start with reconfiguration condition (H.1), which imposes to only activate
a new component once it is installed properly on the affected node. To refine this
condition, we replace ICnew and ACnew by expressions (P.1) and (P.3), respectively.
This results in the following reconfiguration condition14

LIext
old−new ∧ LIint

old−new ∧ AP client
new ∧ AP server

new ∧ RP client
new ∧ RP server

new

← CCnew ∧ LOext
new ∧ LOint

new

(I.1)

This condition can be made less stringent without compromising the reconfigu-
ration correctness. To illustrate this, we split up condition (I.1) into (I.2a), (I.2b)
and (I.2c), and reduce each of these conditions.

14Intermediate reconfiguration conditions are labelled (I.x).
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LIext
old−new ∧ LIint

old−new ← CCnew ∧ LOext
new ∧ LOint

new (I.2a)

AP client
new ∧ AP server

new ← CCnew ∧ LOext
new ∧ LOint

new (I.2b)

RP client
new ∧ RP server

new ← CCnew ∧ LOext
new ∧ LOint

new (I.2c)

Condition (I.2a). Unlike what condition (I.2a) defines, the execution of LIext
old−new

and LIint
old−new does not require for actions CCnew, LOext

new and LOint
new to be com-

pleted. Instead, the new component’s inports can safely be bound once this com-
ponent is available on the affected node. Condition (I.2a) therefore can be reduced
to

LIext
old−new ∧ LIint

old−new ← CCnew (I.3)

Condition (I.2b). The same reduction does not apply to condition (I.2b). Be-
fore activating a new component’s client and/or server processes, its outports must
be bound correctly. This is required to manage when the node’s reconfiguration
support does not impose a safe state by monitoring the affected processes, but in-
stead deactivates these processes immediately and transfers their execution state
towards the new processes. To illustrate this, consider imposing a safe state over
Rold by deactivating its retransmission timer and transferring all unacknowledged
packets towards Rnew. Once Rnew’s timer is started afterwards, Rnew continues
retransmitting these packets. All outports of the new component therefore must be
bound correctly before starting these active objects.

Nevertheless, condition (I.2b) can still be made less stringent because part of
its right operand is already covered by condition (3.1). The latter defines to only
initiate LOext

new and LOint
new once CCnew has completed. So, when LOext

new and LOint
new

are executed, then CCnew will have been completed already. Hence, we can safely
remove CCnew from the right operand of condition (I.2b), which results in

AP client
new ∧ AP server

new ← LOext
new ∧ LOint

new (I.4)

In addition, recall that a client process does not expose service-external outports
(as illustrated in Figure 2.16). Condition (I.4) therefore can safely be reduced to

AP client
new ← LOint

new (I.5)

AP server
new ← LOext

new ∧ LOint
new (I.6)
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Condition (I.2c). Finally, we can safely weaken condition (I.2c) in an analogous
way. When reconfiguration condition (3.1) is fulfilled, then CCnew can safely be
removed from the right operand of condition (I.2c). This results in

RP client
new ∧ RP server

new ← LOext
new ∧ LOint

new (I.7)

In addition, because a client process does not employ service-external outports,
condition (I.7) can safely be reduced to

RP client
new ← LOint

new (I.8)

RP server
new ← LOext

new ∧ LOint
new (I.9)

Conclusion. To conclude, NeCoMan thus meets reconfiguration condition (H.1)
when it fulfills conditions (3.1), (I.3), (I.5), (I.6), (I.8), and (I.9). To simplify the
representation of these constraints, we combine all conditions except (3.1). This
results in reconfiguration conditions (3.7), (3.8), and (3.9).

LIext
old−new ∧ LIint

old−new ← CCnew (3.7)

AP client
new ∧ RP client

new ← LOint
new (3.8)

AP server
new ∧ RP server

new ← LOext
new ∧ LOint

new (3.9)

Finishing old component before activating new version (H.2)

Next, we refine reconfiguration condition (H.2). This condition dictates to only
activate the new network service when all components that belong to the old service
have reached a reconfiguration-safe state. Replacing FCold and ACnew in (H.2) by
expressions (P.2) and (P.3) results in

LIext
old−new ∧ LIint

old−new ∧ AP client
new ∧ AP server

new ∧ RP client
new ∧ RP server

new

← IP client
old ∧ ISSclient

old ∧ IP server
old ∧ ISSserver

old

(I.10)

We can weaken this condition without compromising the correct functioning of
the programmable network or its services in the course of a reconfiguration. We do
this in two steps. First, we simplify condition (I.10) by relying on conditions (3.2)
and (3.3). These conditions impose to (1) only initiate ISSclient

old when IP client
old is
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completed, and (2) only initiate ISSserver
old when IP server

old is completed. Given that
these conditions will be fulfilled, we can safely remove IP client

old and IP server
old from

the right operand of expression (I.10). This results in

LIext
old−new ∧ LIint

old−new ∧ AP client
new ∧ AP server

new ∧ RP client
new ∧ RP server

new

← ISSclient
old ∧ ISSserver

old

(I.11)

Next, we split up condition (I.11) into (I.12a), (I.12b) and (I.12c), and reduce
each of these conditions.

LIext
old−new ∧ LIint

old−new ← ISSclient
old ∧ ISSserver

old (I.12a)

AP client
new ∧ AP server

new ← ISSclient
old ∧ ISSserver

old (I.12b)

RP client
new ∧ RP server

new ← ISSclient
old ∧ ISSserver

old (I.12c)

Condition (I.12a). Condition (I.12a) expresses that LIext
old−new and LIint

old−new

can only be executed when the old client and server processes of the affected com-
ponent are finished. Otherwise, packets that should be delivered to the old processes
will become directed towards the new one, which compromises the correct network
functioning. As illustrated in Figure 2.16, a component’s service-external inports
will only be used by its client processes (in contrast to the service-internal inports
which are used by both client and server processes). Hence, only these client pro-
cesses must be finished before rebinding service-external inports. We can therefore
safely reduce condition (I.12a) to

LIext
old−new ← ISSclient

old (I.13)

LIint
old−new ← ISSclient

old ∧ ISSserver
old (I.14)

Condition (I.12b). Next, we reduce condition (I.12b). Before starting the ac-
tive objects of the new client and server processes, the old processes must be in a
reconfiguration-safe state. This is required again to manage when the node’s recon-
figuration does not impose a safe state by monitoring the affected processes, but
instead deactivates these processes immediately and transfers their execution state
towards the new processes. When replacing Rold, for instance, the timer of the new
retransmission process can only be started once the unacknowledged packets and
the sequence number that is last used are transferred from Rold towards Rnew.

Note, however, that there is no need wait for both the old client and server
processes to reach a safe state before activating the new client or server processes.
This is because a component’s client and server processes operate independently
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from each other (see Figure 2.16), and therefore will never invoke each other (not
directly nor indirectly). AP client

new thus can safely be initiated once ISSclient
old has

completed, while the execution of AP server
new only requires for ISSclient

old to be ended.
Hence, condition (I.12b) can be reduced to

AP client
new ← ISSclient

old (I.15)

AP server
new ← ISSserver

old (I.16)

Condition (I.12c). Finally, we examine condition (I.12c). This condition dic-
tates to only release intercepted packets once the old client and server processes
are finished. Similar as for starting the active objects that these processes employ,
resuming intercepted packets that will be delivered to the new client processes does
only require for the old client processes to be finished (instead of waiting for the old
server process to finish as well). The same holds for resuming intercepted packets
that will be mediated towards the new server processes. NeCoMan can safely release
these packets once the old server processes are finished. Hence, condition (I.12c)
can be weakened to

RP client
new ← ISSclient

old (I.17)

RP server
new ← ISSserver

old (I.18)

However, these conditions are already fulfilled when conditions (3.4) and (3.5)
are met. Condition (3.4) dictates that RP client

new can only be executed if AP client
new ,

LIint
old−new and LIext

old−new are completed. According to condition (I.13), LIext
old−new

in turn can only be executed once ISSclient
old is completed. Hence, condition (I.17)

becomes redundant and can safely be removed. The same applies to condition (I.18).
Condition (3.5) dictates that RP server

new can only be executed if AP server
new and LIint

old−new

are completed. According to condition (I.14), LIint
old−new in turn can only be ex-

ecuted once ISSclient
old and ISSserver

old are completed. Hence, condition (I.18) also
becomes redundant and thus can be removed safely as well.

Conclusion. To conclude, NeCoMan thus meets reconfiguration condition (H.2)
when it fulfills conditions (3.2), (3.3), (3.4), (3.5), (I.13), (I.14), (I.15), and (I.16).
To simplify the representation of these constraints, we combine all conditions except
(3.2), (3.3), (3.4), and (3.5). This results in reconfiguration conditions (3.10), (3.11),
and (3.12).

LIint
old−new ← ISSclient

old ∧ ISSserver
old (3.10)

AP client
new ∧ LIext

old−new ← ISSclient
old (3.11)

AP server
new ← ISSserver

old (3.12)
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Finishing old component before removal (H.3)

Finally, we can refine reconfiguration condition (H.3) in an analogous way. This
reconfiguration condition imposes to only initiate the removal of the old compo-
nent when all its processes are finished. Replacing FCold and RCold in (H.3) by
expressions (P.2) and (P.4) results in

DCold ∧ UOext
old ∧ UOint

old ← IP client
old ∧ ISSclient

old ∧ IP server
old ∧ ISSserver

old (I.19)

Again we can safely weaken the right operand of this condition. Recall that
conditions (3.2) and (3.3) dictate to initiate ISSclient

old and ISSserver
old only when

IP client
old and IP server

old are completed, respectively. Given that these conditions will
be fulfilled, we can safely remove IP client

old and IP server
old from the right operand of

expression (I.19). This results in

DCold ∧ UOext
old ∧ UOint

old ← ISSclient
old ∧ ISSserver

old (I.20)

Next, we split up condition (I.20) into (I.21a), (I.21b) and (I.21c), and examine
each of these conditions.

UOint
old ← ISSclient

old ∧ ISSserver
old (I.21a)

UOext
old ← ISSclient

old ∧ ISSserver
old (I.21b)

DCold ← ISSclient
old ∧ ISSserver

old (I.21c)

Condition (I.21a). Condition (I.21a) cannot be reduced. Because both a com-
ponent’s client and server processes may employ service-internal outports (see Fig-
ure 2.16), these processes must be finished before NeCoMan can unbind the affected
outports.

Condition (I.21b). Because only server processes employ service-external out-
ports (as illustrated in Figure 2.16), NeCoMan does not have to wait for ISSclient

old

to complete before unbinding the old component’s service-external outports. Hence,
condition (I.21b) can safely be reduced to

UOext
old ← ISSserver

old (I.22)
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Figure 3.17: Overview of the partial ordering of NeCoMan’s reconfiguration actions
for carrying out local reconfigurations of distributed services.

Condition (I.21c). Finally, condition (I.21c) is already fulfilled when condi-
tion (3.6) is met. The latter dictates that DCold can only be executed if UOext

old and
UOint

old , LIext
old−new, and LIint

old−new are completed. According to conditions (I.21a)

and (I.22), UOext
old and UOint

old in turn can only be executed after completing ISSclient
old

and ISSserver
old . Hence, condition (I.21c) becomes redundant and can safely be re-

moved.

Conclusion. To conclude, NeCoMan thus meets reconfiguration condition (H.3)
when it fulfills conditions (3.2), (3.3), (3.6), (3.13), and (3.14).

UOint
old ← ISSclient

old ∧ ISSserver
old (3.13)

UOext
old ← ISSserver

old (3.14)

Partial ordering of reconfiguration actions

By combining all these reconfiguration conditions (which are summarized in Ta-
ble 3.3), we can specify the partial ordering of reconfiguration actions that NeCo-
Man must fulfill. This ordering is illustrated in Figure 3.17.
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reconfiguration condition h-l
cond.

place

(3.1) LOext
new ∧ LOint

new ← CCnew p2

(3.2) ISSclient
old ← IP client

old p5

(3.3) ISSserver
old ← IP server

old p7

(3.4) RP client
new ← AP client

new ∧ LIint
old−new ∧ LIext

old−new p12

(3.5) RP server
new ← AP server

new ∧ LIint
old−new p11

(3.6) DCold ← UOext
old ∧ UOint

old ∧ LIext
old−new ∧ LIint

old−new p16

(3.7) LIext
old−new ∧ LIint

old−new ← CCnew (H.1) p2

(3.8) AP client
new ∧ RP client

new ← LOint
new (H.1) p4

(3.9) AP server
new ∧ RP server

new ← LOext
new ∧ LOint

new (H.1) p4

(3.10) LIint
old−new ← ISSclient

old ∧ ISSserver
old (H.2) p8

(3.11) AP client
new ∧ LIext

old−new ← ISSclient
old (H.2) p6

(3.12) AP server
new ← ISSserver

old (H.2) p8

(3.13) UOint
old ← ISSclient

old ∧ ISSserver
old (H.3) p8

(3.14) UOext
old ← ISSserver

old (H.3) p8

Table 3.3: Overview of all reconfiguration conditions that must be fulfilled to cor-
rectly execute local reconfigurations that involve components of a distributed net-
work service. Column “h-l cond.” specifies the high-level conditions from which
some of these reconfiguration conditions are derived. Besides, the right column lists
the place as from which the associated pre-condition is fulfilled.

3.5.4 Reconfiguration algorithm

We now present the algorithm that NeCoMan employs to conduct the local reconfig-
uration of distributed network services. For this we use Petri nets [51] as a modelling
language to visualize the execution of the reconfiguration actions15. Note that the
mathematic representation of Petri nets will not be employed. Instead, we use this
representation to verify that this algorithm fulfills all reconfiguration conditions
which have been defined in the previous subsections.

Figure 3.18 depicts the Petri net that models NeCoMan’s algorithm for conduct-
ing local reconfigurations that involve distributed network services. Every transition

15Because NeCoMan does not execute reconfiguration actions in parallel to perform local re-
configurations, using Petri nets to model these reconfigurations provides only little added value.
However, we use Petri nets anyway to be consistent with the representation of NeCoMan’s al-
gorithms for distributed reconfiguration. As we explain in Chapter 5, the latter coordinate the
concurrent recomposition of multiple nodes.
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Figure 3.18: Petri net representation of NeCoMan’s reconfiguration algorithm to
conduct local recompositions that involve components of a distributed network ser-
vice

in this model represents the execution of a single reconfiguration action. The al-
gorithm first executes all reconfiguration actions related to the installation phase.
Next, the reconfiguration actions to finish the old component are carried out. As
soon as the old component is finished, all reconfiguration actions for activating the
new component become initiated. This way the algorithm aims to limit the commu-
nication disruption that the reconfiguration causes16. Finally, the reconfiguration
actions to remove the old components are executed. Appendix B illustrates this
reconfiguration algorithm in more detail with the replacement of Rold with Rnew.

Since no reconfiguration actions are executed in parallel, the initial marking of
this model contains only one single token which is located in place p1. Besides, we
presume that every reconfiguration action becomes completed correctly – that is, the
execution of a reconfiguration action will never fail. Therefore, when the single token
reaches a specific place px, NeCoMan has correctly executed all reconfiguration

16To satisfy the requirement for limited reconfiguration overhead, the communication disruption
that a reconfiguration causes must be kept to a minimum. This disruption results from intercepting
packets to finish the old network service component. So, the period in which service continuity
will be disrupted during a reconfiguration equals the time-interval between starting to finish the
old component and having the new one activated.
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place reconfiguration actions
that are completed

place reconfiguration actions
that are completed

p1 none p10 ac(p9) ∧ AP client
new

p2 CCnew p11 ac(p10) ∧ LIint
old−new

p3 ac(p2) ∧ LOext
new p12 ac(p11) ∧ LIext

old−new

p4 ac(p3) ∧ LOint
new p13 ac(p12) ∧ RP server

new

p5 ac(p4) ∧ IP client
old p14 ac(p13) ∧ RP client

new

p6 ac(p5) ∧ ISSclient
old p15 ac(p14) ∧ UOint

old

p7 ac(p6) ∧ IP server
old p16 ac(p15) ∧ UOext

old

p8 ac(p7) ∧ ISSserver
old p17 ac(p16) ∧ DCold

p9 ac(p8) ∧ AP server
new

Table 3.4: NeCoMan’s reconfiguration algorithm to conduct local recompositions
that involve components of a distributed network service: definition of all places.
Note that ac(px) represents all reconfiguration actions that have been completed
when the token reaches place px.

actions modelled by px’s input transitions as well as by its ancestor transitions.
To clarify all possible execution states, Table 3.4 lists the reconfiguration actions
that NeCoMan has executed when the single token reaches each one of the places
modelled in Figure 3.18.

This brings us to the correctness of this algorithm. Related to the algorithm’s
Petri net model, each one of the reconfiguration conditions listed in Table 3.3 formal-
izes a pre-condition to fire a transition. So, to verify that the presented algorithm
conducts correct reconfigurations, we must check for every transition modelled in
Figure 3.18 if all pre-conditions (that the associated reconfiguration conditions im-
pose) are met. The execution of LOext

new and LOint
new, for instance, can only be

initiated when CCnew is finished, as dictated by reconfiguration condition (3.1).
We conclude from Figure 3.18 and Table 3.4 that this condition is fulfilled as from
reaching place p2. Because p2 is the input place of LOext

new and the ancestor place
of LOint

new, the algorithm meets this reconfiguration condition.

To illustrate that all other reconfiguration actions are fulfilled as well, the right
column of Table 3.3 identifies for each reconfiguration condition the place as from
which the associated pre-condition is fulfilled. This way, one can verify for each
reconfiguration action that the associated conditions are met. Appendix C demon-
strates in more detail that this is the case.

3.6 Local reconfigurations of isolated services

Besides replacing components that belong to a distributed network-service, NeCo-
Man also coordinates the local addition, replacement and removal of isolated network-
service components. These components are self-contained, and thus encapsulate
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Figure 3.19: Protocol stack composi-
tion of a DiPS+ router before remov-
ing the filter component
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Figure 3.20: Protocol stack composi-
tion of a DiPS+ router after removing
the filter component

only processes that do not collaborate with other ones to complete a service. Hence,
the distinction between client and server processes, as well as between service-
external and service-internal communication ports becomes irrelevant.

In the remainder of this section, we build up to the algorithm that NeCoMan
uses to conduct these local reconfigurations. The structure of this section bears a
close resemblance to Section 3.5. Subsection 3.6.1 first distinguishes the high-level
reconfiguration phases of this algorithm and defines the associated reconfiguration
conditions. Next, Subsection 3.6.2 presents for each of these reconfiguration phases
the reconfiguration actions that the algorithm executes, as well as the associated
reconfiguration conditions. After that, Subsection 3.6.3 completes the set of recon-
figuration conditions that NeCoMan must fulfill by refining the high-level reconfigu-
ration conditions defined in Subsection 3.6.1. Finally, Subsection 3.6.4 presents the
algorithm itself, and indicates that this algorithm fulfills all required reconfiguration
conditions.

All these steps are briefly illustrated by the removal of a filter component from
a network node that is not congested anymore. Figures 3.19 and 3.20 sketch the
protocol stack of the affected node before and after this removal has occurred as
backing. Component F represents the filter component, while component IP en-
capsulates the routing functionality.

3.6.1 High-level reconfiguration phases and conditions

NeCoMan’s second local reconfiguration algorithm comprises the same four phases
as the previous algorithm does. In addition, reconfiguration conditions (H.1), (H.2),
and (H.3) still apply as well.

3.6.2 Detailed overview of each reconfiguration phase

The implementation of these phases, however, is different form the previous algo-
rithm. To explain this in more detail, we briefly discuss the reconfiguration actions
that are executed for each phase. These actions slightly differ from the ones that
the first basic reconfiguration algorithm executes.
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Installation phase

Installing a new component still involves loading this component and binding its
outports. Because for self-contained components the distinction between service-
external and service-internal outports is irrelevant, NeCoMan implements this in-
stallation phase by executing reconfiguration actions CCnew and LOnew. With
this, LOnew symbolizes a reconfiguration action for linking all outports of these
new components17. Hence, we express the implementation of this installation phase
as

ICnew ≡ CCnew f LOnew (P.5)

Note that when removing component F, these reconfiguration actions are redun-
dant. The removal of a component obviously does not involve the installation of
new components.

Besides, the associated reconfiguration condition that imposes to only bind these
outports once their components have been created can be expressed as

LOnew ← CCnew (3.15)

Finishing phase

Similar as for distributed network-service components, finishing the old (isolated)
component involves instructing the node’s reconfiguration support to intercept pack-
ets and to impose a safe state over this component. Because for self-contained
components the distinction between client and server processes is irrelevant, NeCo-
Man implements this finishing phase by executing reconfiguration actions IPold and
ISSold. With this, IPold and ISSold symbolize reconfiguration actions for intercept-
ing packets and imposing a safe state over the affected component. We express the
implementation of this finishing phase therefore as

FCold ≡ IPold f ISSold (P.6)

To illustrate this finishing phase, consider again the removal of component F.
In this example, finishing component F can be accomplished by intercepting the
packets directed to F ’s single inport, and monitoring F until it has processed all
accepted packets. Beside, the order in which both actions are executed must (again)
be coordinated. That is, NeCoMan must first instruct the affected node to intercept
packets before invoking it to impose a safe state. We denote this reconfiguration
condition as

ISSold ← IPold (3.16)

17CCnew is identical as for the previous algorithm.
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Activation phase

Activating the new isolated component involves (1) rebinding all affected inports,
(2) starting this component’s active objects, and (3) resuming packets that have
been intercepted to finish the old component. NeCoMan implements this activation
phase by executing reconfiguration actions LIold−new, APnew, and RPnew, which
are responsible for rebinding all affected inports, activating all encapsulated pro-
cesses, and resuming all intercepted packets, respectively. Hence, we express the
implementation of this activation phase as

ACnew ≡ LIold−new f APnew f RPnew (P.7)

When removing component F, the activation phase reduces to rebinding inports
and resuming intercepted packets. Besides, rebinding inports in this case involves
(1) removing the connection between the lower layer’s outport and the inport of
component F, and (2) connecting the outport of the lower layer to the inport of IP.

Besides, to correctly activate a new component, the order in which the associ-
ated reconfiguration actions are executed must (again) be coordinated. That is, all
affected inports must be bound correctly and the active objects must be started
before resuming intercepted packets. We express this reconfiguration condition as

RPnew ← LIold−new ∧ APnew (3.17)

Removal phase

Finally, removing the old component involves disconnecting all remaining (outport)
bindings and deleting this component from the affected node. When removing
component F, this involves unlinking the remaining connection between F ’s outport
and the inport of component IP.

NeCoMan implements this removal phase by executing reconfiguration actions
DCold and UOold, where UOold represents a reconfiguration action for unlinking
the old components’ outports18. We express this removal phase as

RCold ≡ DCold f UOold (P.8)

In addition, we express the associated reconfiguration condition which defines that
NeCoMan can only delete a component after unlinking its outports as

DCold ← UOold ∧ LIold−new (3.18)

18DCold is identical as for the previous algorithm.
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3.6.3 Refining high-level reconfiguration conditions

Next, we refine reconfiguration conditions (H.1), (H.2), and (H.3) in terms of the
reconfiguration actions that implement the four (high-level) reconfiguration phases.
The method that has been applied to refine these conditions is similar as for the
previous reconfiguration algorithm. Therefore, we only list the resulting reconfigu-
ration conditions without elaborating on the refinement itself.

Installing new component before activation (H.1)

To refine condition (H.1), we substitute ICnew and ACnew for expressions (P.5) and
(P.7), respectively. This results in condition

LIold−new ∧ APnew ∧ RPnew ← CCnew ∧ LOnew (I.23)

After reducing (I.23), we conclude that NeCoMan meets reconfiguration condi-
tion (H.1) when it fulfills conditions (3.15), (3.19), and (3.20).

LIold−new ← CCnew (3.19)

RPnew ∧ APnew ← LOnew (3.20)

Finishing old component before activating new one (H.2)

Next, we refine reconfiguration condition (H.2). Replacing FCold and ACnew in
(H.2) by expressions (P.6) and (P.7) results in

LIold−new ∧ APnew ∧ RPnew ← IPold ∧ ISSold (I.24)

After reducing this condition, we conclude that NeCoMan fulfills reconfiguration
condition (H.2) when it meets conditions (3.16), (3.21), and (3.22).

LIold−new ← IPold (3.21)

RPnew ∧ APnew ← ISSold (3.22)

Finishing old component before removal (H.3)

Finally, we refine reconfiguration condition (H.3). Substituting FCold and RCold

by expressions (P.6) and (P.8) results in

DCold ∧ UOold ← IPold ∧ ISSold (I.25)
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reconfiguration condition h-l
cond.

place

(3.15) LOnew ← CCnew p2

(3.16) ISSold ← IPold p4

(3.17) RPnew ← LIold−new ∧ APnew p7

(3.18) DCold ← UOold ∧ LIold−new p9

(3.19) LIold−new ← CCnew (H.1) p2

(3.20) RPnew ∧ APnew ← LOnew (H.1) p3

(3.21) LIold−new ← IPold (H.2) p4

(3.22) RPnew ∧ APnew ← ISSold (H.2) p5

(3.23) UOold ← ISSold (H.3) p5

Table 3.5: Overview of all reconfiguration conditions that must be fulfilled to cor-
rectly execute local reconfigurations that involve isolated network services. Column
“h-l cond.” specifies the high-level conditions from which some of these reconfigu-
ration conditions are derived. The right column lists the place as from which the
associated pre-condition is fulfilled.

After reducing (I.25), we conclude that NeCoMan meets reconfiguration condi-
tion (H.3) when it fulfills conditions (3.16), (3.18) and (3.23).

UOold ← ISSold (3.23)

Partial ordering of reconfiguration actions

By combining all these reconfiguration conditions (which are summarized in Ta-
ble 3.5), we can specify the partial ordering of these reconfiguration actions. This
ordering is illustrated in Figure 3.21.

3.6.4 Reconfiguration algorithm

Finally, we present the algorithm that NeCoMan uses to add, replace or remove
isolated network-service components. Figure 3.22 depicts the Petri net that models
this second local reconfiguration algorithm. Similar as for replacing components
of a distributed service, this algorithm begins with installing the new service com-
ponent. Next, all reconfiguration actions to finish the old service component are
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Figure 3.21: Overview of the partial ordering of NeCoMan’s reconfiguration actions
for carrying out local reconfigurations of isolated services
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Figure 3.22: Petri net representation of NeCoMan’s algorithm for conducting local
reconfigurations that involve isolated network services

executed. After that, NeCoMan initiates the execution of the reconfiguration ac-
tions responsible for activating the new component. Finally, the removal actions
are is carried out.

Table 3.5 lists all reconfiguration conditions that must be satisfied to correctly
execute these reconfiguration actions. Besides, Table 3.5 also identifies for each of
these reconfiguration condition the place (of the Petri net) as from which the asso-
ciated pre-condition is fulfilled. From this, one can verify that the algorithm meets
all required reconfiguration conditions, and thus conducts correct reconfigurations.

3.7 Conclusion

To conclude, we check both local reconfiguration algorithms against the four re-
quirements that NeCoMan must fulfill to achieve its objectives.
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3.7.1 Correct reconfigurations

As demonstrated in Sections 3.5.4 and 3.6.4, both local reconfiguration algorithms
fulfill all imposed reconfiguration conditions, and thus conduct correct reconfigura-
tions. Besides, recall that NeCoMan does not enforce a consistent execution state
by itself, but instead expects the node’s reconfiguration support to accomplish this.

3.7.2 Limited reconfiguration overhead

Limiting the reconfiguration overhead involves, among others, minimizing the com-
munication disruption that a reconfiguration causes. This communication disrup-
tion results from intercepting packets to finish the old network service component.
Hence, the period in which service continuity will be disrupted during reconfigu-
ration equals the time-interval between starting to finish the old component and
having the new one activated. To minimize this period, both reconfiguration al-
gorithms (1) activate the new service as soon as the old one is finished, and (2)
shorten the activation phase through partially connecting the new component into
the protocol stack compositions during the installation phase.

These general-purpose reconfiguration algorithms, however, do not take into
account the services’ characteristics nor the reconfiguration semantics. For a number
of services, therefore, the conducted reconfiguration will not be optimized. To limit
the reconfiguration overhead if possible, NeCoMan must allow customizing both
algorithms to exploit service specific characteristics and reconfiguration semantics.

3.7.3 Limited openness

NeCoMan aims to restrict the contribution needed to conduct a reconfiguration. We
believe that network service developers should not be burdened with the develop-
ment of ad hoc reconfiguration algorithms. Both local reconfiguration algorithms,
therefore, coordinate the safe reconfiguration of a broad set of network services.
For many services, however, these general-purpose reconfiguration algorithms must
be tailored. To illustrate this, consider again the removal of a filter component.
As explained in Subsection 3.6.2, various reconfiguration actions (including CCnew,
LOnew, and APnew) become redundant when carrying out this reconfiguration. As
an additional example, Figure B.1 depicts the customized implementation of the
(first) local reconfiguration algorithm to replace Rold.

To restrict the contribution needed from a service developer, NeCoMan must
itself tailor each phase of the employed reconfiguration algorithm to the services’
characteristics and the reconfiguration semantics. This way, the developer of the
network service should only provide a declarative description of these characteristics
and semantics (that is, besides a declarative description of the reconfiguration that
must be executed) for NeCoMan to conduct a reconfiguration.
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3.7.4 Reusability

Finally, to improve reusability, NeCoMan has been prepared to recompose vari-
ous flow-oriented, component-based protocol stack architectures. To accomplish
this, the implementation of each reconfiguration action restricts to the execution
of (some of) the reconfiguration operations that the affected programmable node
must provide. This has been (briefly) demonstrated in Section 3.5.2. In addition,
Appendix B demonstrates in more detail that NeCoMan uses only the eight node
operations specified in Section 3.3.1 to replace Rold with Rnew.

We conclude that both local reconfiguration algorithms conduct safe local
reconfigurations and that NeCoMan is prepared to be used on top of vari-
ous flow-oriented, component-based protocol stack architectures. To fully
comply with the second and third requirement, however, NeCoMan must
customize both reconfiguration algorithms (if needed) to fully exploit the
service specific characteristics and the reconfiguration semantics. We
discuss these customizations in the next chapter.
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Chapter 4

Customizations to local
reconfigurations

Since both algorithms presented in the previous chapter seek to conduct the local
reconfiguration of a broad variety of services, they lack two important requirements
that we impose on service reconfiguration in programmable networks. First, these
basic reconfiguration algorithms do not guarantee limited reconfiguration overhead
for every reconfiguration. Hence, in some cases the employed algorithm must be
customized to optimize the reconfiguration process. Second, NeCoMan must restrict
the contribution needed to conduct a correct and optimized reconfiguration. Be-
sides a specification of the recomposition that must be executed, a reconfiguration
description should only contain a declarative specification of the service character-
istics and reconfiguration semantics. Based on these specifications, the NeCoMan
middleware must be able to carry out a tailored reconfiguration.

To fulfill both requirements, NeCoMan incorporates an extensive set of cus-
tomizations that apply to its local reconfiguration algorithms. Section 4.1 briefly
lists these customizations and explains how they have been identified. Next, Sec-
tions 4.2 to 4.7 describe these customizations in full detail. Finally, Section 4.8
elaborates (again) on the four requirements that NeCoMan must fulfill to achieve
its objectives.

4.1 Overview

Since we aim to limit the contribution needed from the service developer, NeCoMan
should provide an extensive set of customizations to its basic algorithms. We de-
fined these customizations by re-ordering and discarding all reconfiguration actions
that both local algorithms include. From the resulting combinations, we selected
those customizations that limit the reconfiguration overhead, and still yield a valid

91
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reconfiguration – that is, given that some additional pre-conditions are fulfilled.

A first (resulting) customization involves switching the order of the activation
and finishing phase. Section 4.2 explains how NeCoMan customizes its local re-
configuration algorithms when this customization is applicable. A next customiza-
tion involves discarding all finishing actions. This customization is presented in
Section 4.3. As will be clarified soon, both customizations affect the high-level
reconfiguration conditions that must be fulfilled.

The other customizations, in contrast, do not affect high-level reconfiguration
conditions. Instead, these customizations include only omitting reconfiguration ac-
tions that are redundant for a particular reconfiguration. Section 4.4, for instance,
explains how NeCoMan tailors the employed reconfiguration algorithm when the
new service components do not use active objects. Next, Section 4.5 discusses which
reconfiguration actions are omitted when the affected components employ only client
or server processes, instead of both. Section 4.6 then explains how NeCoMan cus-
tomizes its local reconfiguration algorithm for distributed services when the affected
components expose only service-internal inports or outports, instead of both. Af-
ter that, Section 4.7 discusses how NeCoMan tailors the algorithm that it uses for
conducting reconfigurations of isolated services when these reconfigurations involve
service addition or removal instead of replacement.

All these customizations are presented in a similar fashion. We first specify the
pre-condition(s) that must be fulfilled to safely apply a specific customization. Next,
we explain its impact by identifying all changes that it causes. These include the
high-level conditions that are affected and the reconfiguration actions that become
redundant. After that, we discuss the effect of these changes on the reconfiguration
conditions. Furthermore, for the first two customizations (which involve activating
the new service before finishing the old one, and discarding the finishing actions, re-
spectively) we also illustrate the partial ordering of the (remaining) reconfiguration
actions as well as the resulting reconfiguration algorithm. In addition, Appendix E
evaluates the effect of these two customizations on the reconfiguration overhead.

Before focussing on the customizations themselves, we briefly illustrate how we
identified the reconfiguration conditions that a customization changes. When a
customization changes a high-level condition (which is the case for the first two
customizations), then all reconfiguration conditions derived from this high-level
condition become redundant. If a customization includes discarding condition (H.2),
for instance, we can deduce from Tables 3.3 and 3.5 that reconfiguration conditions
(3.10), (3.11), (3.12), (3.21) and (3.22) are of no use anymore. In addition, when a
customization involves discarding a specific reconfiguration action, then the partial
ordering sketched in Figures 3.17 and 3.21 assists in defining the safety conditions
that become affected. When a customization involves omitting the execution of
LIint

old−new, for instance, we can deduce from Figure 3.17 that conditions (3.4), (3.5),
(3.6), (3.7) and (3.10) become affected.

As will be illustrated soon, the safety conditions that a customization affects
must be replaced with new ones (which are customization specific). Note, however,
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that we will not discuss in detail how these conditions have come about to avoid los-
ing focus. Besides, the principles to determine these new reconfiguration conditions
are identical to those applied for defining the conditions that have been presented
in the previous chapter.

4.2 Activate before finishing

The first customization that applies to both local reconfiguration algorithms in-
volves switching the order of the finishing and activating phases such that the new
network service component becomes activated before the old one is finished. This
enables NeCoMan to drive the old service components to a reconfiguration-safe state
while the new service is already operational. Because finishing a network service
component can be very time-consuming, this way communication disruption will be
reduced.

4.2.1 Local reconfigurations of distributed services

We first explain how this customization applies to NeCoMan’s algorithm for replac-
ing components of a distributed service.

Pre-conditions

Three pre-conditions must be fulfilled to safely switch the order of the activation
and finishing phase. These include that

1. the old component is stateless,

2. the new service component is able to process all ongoing protocol-transactions,
and

3. the network tolerates packet re-ordering.

1) Stateless components. When the old network service component is state-
less, its state-information is irrelevant to other network components. Such stateless
components, therefore, do not have to be driven to a consistent execution state
before their new counterpart can be activated safely. When replacing a compres-
sion component, for instance, packets can be re-directed to the new compression
component immediately instead of first waiting until the old component has pro-
cessed all accepted packets. Because this compression component is stateless, no
other components depend on its execution state, and thus consistency will not be
compromised.
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2) Ongoing protocol-transactions. When NeCoMan activates the new compo-
nent before finishing the old one, there is no knowledge about the status of ongoing
protocol-transactions at the moment when the new component is brought into use.
Hence, to safely apply this customization, the new component must be able to
continue processing all ongoing protocol-transactions.

3) Packet re-ordering tolerated. Besides, the new version of a component
can only be activated before the old version is finished when packet re-ordering
is tolerated. When a new component is brought into use before the old one has
processed all accepted packets, both components (temporarily) execute in parallel
during reconfiguration. Consequently, the packets that both versions process will
most likely be shuffled. NeCoMan, therefore, can only apply this customization
when packet re-ordering does not compromise the correct functioning of the network
or its applications. This is the case, for instance, when a stateless component
(such as the affected compression component) operates in a TCP network, which
guarantees that packets always arrive at their destination in the same order as they
were sent.

Modifications

Switching the order of the activation and finishing phases causes the following
changes.

1. First, reconfiguration condition (H.2) does not apply anymore. Recall that
this condition dictates to finish the old component before activating the new
one so as to initialize the latter in a state that is consistent with the rest of
the network. Because activating a component before finishing the old one can
only be accomplished when stateless components are involved, however, this
high-level reconfiguration condition can safely be discarded. To be precise, we
replace condition (H.2) with reconfiguration condition (H.4)

FCold ← ACnew (H.4)

which imposes to only finish the old network service component when the
new one is brought into use. Note that this reconfiguration condition does not
enforce a correct reconfiguration, but instead seeks to limit the communication
disruption that a reconfiguration causes.

2. Second, reconfiguration actions RP client
new and RP server

new become redundant.
Activating a new (compression) component before the old one is finished does
not require intercepting and resuming packets. Instead, this only requires
rebinding all affected inports and starting the active objects of the new com-
pression component (if any). So, when NeCoMan applies this customization,
the implementation of its activation phase does not include actions RP client

new
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and RP server
new anymore. Hence, we express this customized activation phase

as

ACnew ≡ LIint
old−new f LIext

old−new f AP client
new f AP server

new (P.9)

3. Besides, reconfiguration actions IP client
old and IP server

old become redundant as
well. This is because finishing the old service component does not involve
intercepting packets anymore. Once the new (compression) compression com-
ponent is activated, all affected inports are (re-)bound such that packets are
delivered exclusively to the new component. The old (compression) compo-
nent, therefore, does not have to be prevented anymore from accepting new
packets to bring about a reconfiguration-safe state. So, when activating a new
component before finishing the old one, the implementation of the finishing
phase does not include IP client

old and IP server
old anymore. Hence, we express this

customized finishing phase as

FCold ≡ ISSclient
old f ISSserver

old (P.10)

4. Finally, the ordering defined by conditions (I.5) and (I.6) can be discarded as
well when the activation and finishing phases are switched1. These conditions
define that the new component’s outports must be bound correctly before
starting its active objects. As we discussed in Section 3.5.3, this is required to
manage when the node’s reconfiguration support does not impose a safe state
by monitoring the affected processes, but instead deactivates these processes
immediately and transfers their execution state towards the new processes.
After executing AP client

new and AP server
new in that case, the new component may

continue processing (ongoing) requests that the old component had already
accepted.

When NeCoMan activates the new component before finishing the old one,
however, this new (stateless) component becomes initialized with a default
execution state. Hence, this component will not continue processing (ongoing)
requests once its active objects are started. Because of this, conditions (I.5)
and (I.6) are of no use anymore.

Result

The above-mentioned changes affect many of the reconfiguration conditions listed in
Table 3.3. By discarding condition (H.2), reconfiguration conditions (3.10), (3.11),
and (3.12) are of no use anymore. In addition, because IP client

old and IP server
old

1Recall that conditions (I.5) and (I.6) are part of safety conditions (3.8) and (3.9), as explained
in Section 3.5.3 page 74.
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have become redundant, reconfiguration conditions (3.2) and (3.3) do not apply
anymore either (this can be deduced from Figure 3.17). Similarly, reconfiguration
conditions (3.4) and (3.5) are redundant because RP client

new and RP server
new will not be

executed anymore. Finally, reconfiguration conditions (3.8) and (3.9) are of no use
anymore either because (1) conditions (I.5) and (I.6) do not apply any longer, and
(2) RP client

new and RP server
new are discarded.

These affected reconfiguration conditions become replaced with conditions (4.1)
to (4.5), which define the new pre-conditions that NeCoMan must fulfill to correctly
initiating the execution of AP client

new , AP server
new , LIint

old−new, LIext
old−new, ISSclient

old and
ISSserver

old when it activates the new component before finishing the old one.

AP client
new ∧ AP server

new ← CCnew (4.1)

LIint
old−new ← AP client

new ∧ AP server
new ∧ LOint

new ∧ LOext
new (4.2)

LIext
old−new ← AP client

new ∧ LOint
new ∧ LIint

old−new (4.3)

ISSclient
old ← LIint

old−new ∧ LIext
old−new (4.4)

ISSserver
old ← LIint

old−new (4.5)

Condition (4.1) imposes to only activate the new component’s client and server
processes once this component has been created. Condition (4.2) defines to redirect
packet flows from the old towards the new component’s service-internal inports once
the new component is prepared to process these packets – that is, after starting its
active objects and binding its outports. Similarly, condition (4.3) imposes to only
redirect packet flows towards the new component’s service-external inports if the
new component is prepared to handle these service requests. This requires for (1) the
active objects of the new client process to be started2, and (2) the new component’s
service-internal inports and outports to be bound. Finally, conditions (4.4) and
(4.5) result from refining high-level condition (H.4). Condition (4.4) specifies to only
start finishing the old component’s client processes once packet flows are redirected
towards the (service-external and service-internal) inports of the new component.
Similarly, condition (4.5) imposes to only finish the old server processes if packets
are redirected to the service-internal inports of the new component3.

To conclude, Table 4.1 summarizes all new and remaining reconfiguration con-
ditions that NeCoMan must fulfill to correctly activate the new component before
finishing the old one. The resulting partial ordering of reconfiguration actions is
sketched in Figure 4.1. In addition, Figure 4.2 depicts the Petri net that models
NeCoMan’s local reconfiguration algorithm for distributed services after applying
this customization. Note that the right column of Table 4.1 specifies for each recon-
figuration condition the place (of this Petri net model) as from which the associated
pre-condition is fulfilled. This enables to verify that the algorithm modelled in Fig-
ure 4.2 meets all required reconfiguration conditions.

2Recall that only client processes expose service-external inports.
3Recall that server processes do not expose service-external inports.
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reconfiguration condition place

(3.1) LOext
new ∧ LOint

new ← CCnew p2

(3.6) DCold ← UOext
old ∧ UOint

old ∧ LIext
old−new ∧ LIint

old−new p12

(3.7) LIext
old−new ∧ LIint

old−new ← CCnew p2

(3.13) UOint
old ← ISSclient

old ∧ ISSserver
old p10

(3.14) UOext
old ← ISSserver

old p10

(4.1) AP client
new ∧ AP server

new ← CCnew p2

(4.2) LIint
old−new ← AP client

new ∧ AP server
new ∧ LOint

new ∧ LOext
new p6

(4.3) LIext
old−new ← AP client

new ∧ LOint
new ∧ LIint

old−new p7

(4.4) ISSclient
old ← LIint

old−new ∧ LIext
old−new p8

(4.5) ISSserver
old ← LIint

old−new p7

Table 4.1: Customization of NeCoMan’s algorithm to replace a component of a
distributed service: overview of all reconfiguration conditions that must be fulfilled
when activating the new component before finishing the old one.
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Figure 4.1: Customization of NeCoMan’s algorithm to replace a component of a
distributed service: overview of the partial ordering of reconfiguration actions that
the reconfiguration conditions listed in Table 4.1 define.

4.2.2 Local reconfigurations of isolated services

Activating the new component before finishing the old one can be applied as well
when adding, replacing or removing isolated services.
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Figure 4.2: Customization of NeCoMan’s algorithm to replace a component of a dis-
tributed service: Petri net representation of the resulting algorithm when activating
the new component before finishing the old one.

Pre-conditions

The pre-conditions to apply this customization are similar as when distributed
services are involved. Because isolated services do not participate in protocol-
transactions, however, the second pre-condition becomes redundant4. Hence, NeCo-
Man can safely activate a new isolated service before finishing the old one if (1) the
old component is stateless and (2) packet re-ordering is tolerated.

Modifications

Switching the order of the activation and finishing phase causes the following
changes to local reconfigurations of isolated services. First, condition (H.2) be-
comes replaced with (H.4). Second, activating a new component does not involve
the execution of RPnew anymore. NeCoMan therefore implements this customized
activation phase as follows:

ACnew ≡ LIold−new f APnew (P.11)

4this pre-condition defines that the new component must be able to process all ongoing protocol-
transactions
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Finally, there is no need anymore to intercept packets directed to the old com-
ponent so as to finish the latter. Once all inports are bound correctly, no more
packets will be delivered to the old component’s inports. Hence, NeCoMan does
not include IPold anymore to implement this customized finishing phase. We ex-
press the implementation of this customized finishing phase as

FCold ≡ ISSold (P.12)

Result

These changes affect various reconfiguration conditions. By discarding condition
(H.2), reconfiguration conditions (3.21) and (3.22) are of no use anymore. In ad-
dition, because IPold has become redundant, reconfiguration condition (3.16) does
not apply anymore either. Finally, reconfiguration conditions (3.17) and (3.20) are
of no use anymore either. Instead, these conditions become replaced with conditions
(4.6), (4.7) and (4.8).

APnew ← CCnew (4.6)

LIold−new ← APnew ∧ LOnew (4.7)

ISSold ← LIold−new (4.8)

Condition (4.6) imposes to only activate the new component’s processes once this
component has been created. Condition (4.7) defines to redirect packet flows from
the old towards the new component’s inports after starting the active objects that
the latter includes and binding its outports. Finally, condition (4.8) specifies to
only start finishing the old component’s processes once packet flows are redirected
towards the inports of the new component. This condition results from refining
high-level condition (H.4).

To conclude, Table 4.2 summarizes all new and remaining reconfiguration con-
ditions that NeCoMan must fulfill when it applies this customization. The resulting
partial ordering of reconfiguration actions is sketched in Figure 4.3. Furthermore,
Figure 4.4 depicts the Petri net that models NeCoMan’s local reconfiguration algo-
rithm for isolated services after applying this customization.

4.3 No finishing

A next customization that applies to both local reconfiguration algorithms in-
volves omitting their finishing actions. Driving a network service component to
a reconfiguration-safe state may be very time-consuming. When the network or
the new service component is able to cope with inconsistencies, however, there is
no need for the reconfiguration middleware to preserve consistency. In that case,
NeCoMan can safely omit its finishing actions, thus reducing the overhead that a
reconfiguration causes.
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reconfiguration condition place

(3.15) LOnew ← CCnew p2

(3.18) DCold ← UOold ∧ LIold−new p7

(3.19) LIold−new ← CCnew p2

(3.23) UOold ← ISSold p6

(4.6) APnew ← CCnew p2

(4.7) LIold−new ← APnew ∧ LOnew p4

(4.8) ISSold ← LIold−new p5

Table 4.2: Customization of NeCoMan’s algorithm to add, replace or remove iso-
lated services: overview of all reconfiguration conditions that must be fulfilled when
activating the new component before the old one is finished.
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Figure 4.3: Customization of NeCoMan’s algorithm to add, replace or remove iso-
lated services: overview of the partial ordering of reconfiguration actions that the
reconfiguration conditions listed in Table 4.2 define.
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Figure 4.4: Customization of NeCoMan’s algorithm to add, replace or remove iso-
lated services: Petri net representation of the resulting algorithm when activating
the new component before finishing the old one.

4.3.1 Local reconfigurations of distributed services

Pre-conditions

To apply this customization, the network or the new service component must be
able to recover from or tolerate inconsistencies that may occur in the course of
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a reconfiguration. These inconsistencies come about when packets get lost, when
ongoing protocol-transactions cannot be further processed, or when inconsistent
execution states come about. NeCoMan, therefore, can only safely omit its finishing
actions when

1. the affected service components operate in a best-effort network,

2. the new service component is able to process all ongoing protocol-transactions,
and

3. inconsistent execution states (if any) do not compromise the correct function-
ing of the network.

1) Best-effort network. Best-effort networks (which employ protocols such as
IP and UDP) do not guarantee packet delivery. Applications and higher-layer pro-
tocols that employ these networks, therefore, must be able to cope with unreliable
packet delivery. If this is the case, NeCoMan can safely remove the old component
immediately instead of first monitoring until all accepted packets are processed.
The packet loss that this may bring about will be dealt with, if necessary, by the
applications or by higher layer protocols using this best-effort network.

2) Ongoing protocol-transactions. When NeCoMan discards its finishing ac-
tions, there is no knowledge about the status of ongoing protocol-transactions at the
moment when the new component is brought into use. This is similar as when NeCo-
Man activates the new component before finishing the old one. The new component
therefore must be able to continue processing all ongoing protocol-transactions. If
this is not the case, finishing actions cannot be omitted without breaking the net-
work’s correct functioning.

3) Inconsistent execution states. In addition, NeCoMan can only omit its fin-
ishing actions when this causes no inconsistent execution states or when the network
restores from or tolerates inconsistent execution states. This requirement is always
fulfilled when replacing stateless components (such as a compression component).
Because these components do not share their execution state with other network
components, there is no need to bring about a consistent execution state before
removing them5.

Modifications

This customization brings along the following changes:

5that is, given that they operate in a best-effort environment and are able to accept and process
all pending service request
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1. Reconfiguration conditions (H.2) and (H.3) become redundant and are there-
fore discarded. Instead, we replace these (high-level) conditions with (H.5)

RCold ← ACnew (H.5)

which imposes to only remove the old network service component when the
new one is activated. Although this condition is not essential to conduct a
correct reconfiguration, it is required to minimize communication disruption.
If the old compression component becomes removed (long) before the new one
is activated, then a reconfiguration causes significant overhead. This would
undo the advantage of omitting finishing actions.

2. Omitting all finishing actions implies that NeCoMan discards the execution
of IP client

old , IP server
old , ISSserver

old , and ISSclient
old . Besides, since packets are

not intercepted during reconfiguration, there is no need to resume intercepted
packets either. So, the execution of RP client

new and RP server
new will also be dis-

carded. Hence, in this case NeCoMan implements its activation phase as
specified by (P.9).

3. Conditions (I.5) and (I.6) are not relevant anymore either when NeCoMan
omits the execution of all its finishing actions. These conditions only apply
to reconfigurations that employ state-transfer to reach a reconfiguration-safe
state (instead of monitoring the affected processes). Because omitting all fin-
ishing actions implies that no safe state will be reached at all, these conditions
are of no use anymore.

Result

The above-mentioned changes affect reconfiguration conditions (3.10), (3.11), (3.12),
(3.13), (3.14), (3.2), (3.3), (3.4), (3.5), (3.8) and (3.9). These reconfiguration con-
ditions become replaced with conditions (4.1), (4.2), (4.3), (4.9) and (4.10), which
define the new pre-conditions that NeCoMan must fulfill to correctly initiate the
execution of AP client

new , AP server
new , LIint

old−new and LIext
old−new when it discards all finish-

ing actions. Note that conditions (4.1), (4.2) and (4.3) originate from the previous
customization (which involves activating the new service before finishing the old
one).

UOint
old ← LIint

old−new ∧ LIext
old−new (4.9)

UOext
old ← LIint

old−new (4.10)

Conditions (4.9) and (4.10), in contrast, result from refining high-level condi-
tion (H.5). Condition (4.9) specifies to only unlink a component’s service-internal
outports once this component will not be invoked anymore – that is, after redirect-
ing packet flows towards the (service-external and service-internal) inports of the
new component. Similarly, condition (4.10) imposes to only unlink a component’s
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reconfiguration condition place

(3.1) LOext
new ∧ LOint

new ← CCnew p2

(3.6) DCold ← UOext
old ∧ UOint

old ∧ LIext
old−new ∧ LIint

old−new p10

(3.7) LIext
old−new ∧ LIint

old−new ← CCnew p2

(4.1) AP client
new ∧ AP server

new ← CCnew p2

(4.2) LIint
old−new ← AP client

new ∧ AP server
new ∧ LOext

new ∧ LOint
new p6

(4.3) LIext
old−new ← AP client

new ∧ LOint
new ∧ LIint

old−new p7

(4.9) UOint
old ← LIint

old−new ∧ LIext
old−new p8

(4.10) UOext
old ← LIint

old−new p7

Table 4.3: Customization of NeCoMan’s algorithm to replace a component of a
distributed service: overview of all reconfiguration conditions that must be fulfilled
when finishing actions are omitted.
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Figure 4.5: Customization of NeCoMan’s algorithm to replace a component of a
distributed service: overview of the partial ordering of reconfiguration actions that
the reconfiguration conditions listed in Table 4.3 define.

service-external outports once its service-internal inports will not be invoked any-
more. This is because (1) only server processes expose service-external outports,
and (2) these server processes can only be invoked via their service-internal inports.

To conclude, Table 4.3 summarizes all new and remaining reconfiguration con-
ditions that NeCoMan must fulfill when it applies this customization. The resulting
partial ordering of reconfiguration actions is sketched in Figure 4.5. Furthermore,
Figure 4.6 depicts the Petri net that models NeCoMan’s local reconfiguration algo-
rithm for distributed services after applying this customization.
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Figure 4.6: Customization of NeCoMan’s algorithm to replace a component of a
distributed service: Petri net representation of the resulting algorithm when all
finishing actions are omitted.

4.3.2 Local reconfigurations of isolated services

Pre-conditions

The pre-conditions to apply this customization when isolated services are involved
are similar as for distributed network services. The requirement for the new com-
ponent to be able to continue processing all ongoing protocol-transaction, however,
can be discarded. This is because self-contained network services do not commu-
nicate by protocol-transactions, as protocol-transactions expose dependencies with
other components.

So, to safely omit all finishing actions, (1) the affected service components must
operate in a best-effort network, and (2) inconsistent execution states must be
tolerated or dealt with by the network itself. Note that the last of both requirements
is always fulfilled when a reconfiguration involves the addition of a new isolated
service component, for instance when adding a filter component to a congested
node. This reconfiguration is similar to the replacement of a dummy service (which
contains no functionality) by the new filter service. Because a dummy service is
always in a consistent execution state, there is no need to finish this service before
activating the newly added filter component.

Modifications

Similar to local reconfigurations of distributed services, omitting all finishing actions
imposes several adjustments to the algorithm for conducting local reconfigurations
of isolated services. This results, among others, from replacing conditions (H.2)
and (H.3) by condition (H.5). Besides, omitting all finishing actions implies that
NeCoMan discards the execution of IPold and ISSold. If this is the case, the exe-
cution of RPnew becomes redundant and will be omitted as well. Hence, NeCoMan
implements the activation phase as defined by expression (P.11).

These changes again affect various reconfiguration conditions, including (3.21),
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reconfiguration condition place

(3.15) LOnew ← CCnew p2

(3.18) DCold ← UOold ∧ LIold−new p6

(3.19) LIold−new ← CCnew p2

(4.6) APnew ← CCnew p2

(4.7) LIold−new ← APnew ∧ LOnew p4

(4.11) UOold ← LIold−new p5

Table 4.4: Customization of NeCoMan’s algorithm to conduct local reconfigurations
of isolated services: overview of all reconfiguration conditions that must be fulfilled
when all finishing actions are omitted.
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Figure 4.7: Customization of NeCoMan’s algorithm to conduct local reconfigura-
tions of isolated services: overview of the partial ordering of reconfiguration actions
that the reconfiguration conditions listed in Table 4.4 define.

(3.22), (3.23), (3.16), (3.17), and (3.20). These conditions become replaced with
conditions (4.6), (4.7) and (4.11)

UOold ← LIold−new (4.11)

where condition (4.11) specifies to only unlink a component’s outports after redi-
recting packet flows towards the inports of the new component. This reconfiguration
condition result from refining high-level condition (H.5).

Result

Table 4.4 summarizes all new and remaining reconfiguration conditions that must
be fulfilled. The resulting partial ordering of reconfiguration actions is sketched in
Figure 4.7. Furthermore, Figure 4.8 depicts the Petri net that models NeCoMan’s
local reconfiguration algorithm for isolated services after applying this customiza-
tion.
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Figure 4.8: Customization of NeCoMan’s algorithm to conduct local reconfigu-
rations of isolated services: Petri net representation of the local reconfiguration
algorithm when all finishing actions are omitted.

4.4 No active objects

The following (trivial) customization involves the absence of active objects. Ob-
viously, NeCoMan should only invoke the affected node to start active objects if
the new service processes employ active objects. If this is not the case, NeCoMan
can omit the reconfiguration actions that involve initiating active objects – that is,
AP client

new and/or AP server
new . This customization can be applied to both local recon-

figuration algorithms, as well as to the algorithms that result from applying one of
the previous customizations to these algorithms.

4.4.1 Local reconfigurations of distributed services

Pre-conditions

The only (trivial) pre-condition that must be fulfilled to omit the execution of
AP client

new and/or AP server
new includes that the new component’s client and/or server

processes do not employ active objects.

Modifications

To illustrate the effect of this customization, Table D.1 lists all reconfiguration
conditions that are changed when AP client

new becomes redundant. For each of these
conditions, the resulting reconfiguration conditions (if any) are presented in the
right column of this table. Similarly, Table D.2 lists the reconfiguration conditions
that are affected when omitting AP server

new .

4.4.2 Local reconfigurations of isolated services

Pre-conditions

NeCoMan can only omit the execution of APnew when the new component does
not employ active objects. Note that this is always the case when a reconfiguration
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involves removing an isolated component from a node’s protocol stack composition.

Modifications

When the new component does not employ active objects, NeCoMan discards
APnew. Table D.3 lists all reconfiguration conditions that this customization changes.

4.5 Only client or server processes instead of both

The next customization relates to the client and server processes that a component
encapsulates. NeCoMan omits some of its reconfiguration actions when the old and
new version of the affected component encapsulate only client or server processes,
instead of both. This customization, therefore, can only be applied to NeCoMan’s
local reconfiguration algorithm for distributed services (not to the algorithm for iso-
lated services), as well as to the algorithms that result from previous customizations
to this basic algorithm.

Pre-conditions

No additional pre-conditions must be fulfilled to apply this customization – that is,
besides the obvious condition that the affected component should only encapsulate
client or server processes.

Modifications

When the affected components encapsulate only client processes, NeCoMan (ob-
viously) omits the execution of IP server

old , ISSserver
old , AP server

new , and RP server
new . In

addition, LOext
new and UOext

old become redundant as well and will be omitted. This
is because a client process exposes no service-external outports according to our
component model6. To illustrate the impact of this customization, Table D.4 lists
all reconfiguration conditions that are changed when a reconfiguration involves only
client processes.

When the affected components encapsulate only server processes, NeCoMan
discards the execution of IP client

old , RP client
new , ISSclient

old , and AP client
new . Besides, in

this case also LIext
old−new becomes redundant and will be omitted. This is because,

according to our component model, a server process does not expose service-external
inports. Table D.5 presents all reconfiguration conditions that are changed when a
reconfiguration involves only server processes.

6as explained in Section 2.5
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Figure 4.9: A compression service.

4.6 Only service-internal inports or outports in-
stead of both

The next customization is targeted at omitting reconfiguration actions that in-
volve service-internal inports and outports. To be precise, this customization seeks
to discard the execution of LOint

new, UOint
old , or LIint

old−new, if possible. Recall that
collaborating client and server processes use these service-internal communication
ports to exchange packets during the execution of a protocol-transaction. This
customization, therefore, can only be applied to NeCoMan’s local reconfiguration
algorithm for distributed services, as well as to the algorithms that result from
previous customizations to this basic algorithm.

Pre-conditions

The execution of LOint
new, UOint

old or LIint
old−new can only be discarded when the af-

fected components

1. encapsulate only client or server processes, instead of both, and

2. communicate by a unidirectional communication protocol.

To illustrate this, consider the (independent) replacement of a compression and
a decompression component. As illustrated in Figure 4.9, these components encap-
sulate only a client or a server process – that is, to compress or decompress accepted
packets, respectively. Besides, these processes communicate to each other by a uni-
directional communication protocol. Hence, the compression component does not
expose service-internal inports, and the decompression component does not provide
service-internal outports.

Modifications

Consequently, replacing the compression component does not require the execution
of LIint

old−new. In addition, when replacing the decompression component, LOint
new

and UOint
old are redundant and will be discarded. To illustrate the impact of these

customizations, Table D.6 lists all reconfiguration conditions that are changed when
LIint

old−new becomes redundant on node x. Besides, Table D.7 lists all reconfiguration
conditions that are changed when LOint

new and UOint
old are redundant on that node x.
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4.7 Service addition or removal

The last customizations are targeted at the reconfiguration type – that is, service
addition, removal, or replacement. To be precise, NeCoMan applies two different
customizations in case of service addition and removal, respectively. Recall that
NeCoMan’s local reconfiguration algorithm for distributed services supports only
component replacement, so as to avoid breaking structural integrity7. Both cus-
tomizations, therefore, only apply to NeCoMan’s local reconfiguration algorithm
for isolated services.

Pre-conditions

No additional pre-conditions must be fulfilled for NeCoMan to safely apply these
customizations.

Modifications

NeCoMan applies a different customization depending on whether service addition
or removal is involved.

a) Service addition. As already explained in Section 4.3.2, adding a new service
is similar to replacing a dummy service (which contains no functionality) with this
new version. Since a dummy service is inherently consistent at any moment in
time, there is no need to finish this dummy service before activating the newly
added service. Hence, in this case NeCoMan omits the execution of IPold, ISSold,
and RPnew.

Besides, the addition of a new service component does not require the execution
of UOold and DCold either. Adding a filter component F to a congested node, for
instance, involves first loading this component and binding its outports8. Next,
component F becomes activated by redirecting the packet-flow from component IP
to the inport of component F. The execution of LIold−new thus involves removing
the connection between the lower layer and IP, and simultaneously connecting this
lower layer to F. After that, there is no need anymore to execute UOold and DCold

since no old component must be disconnected and removed. This reconfiguration
thus completes after executing LIold−new.

To illustrate the impact of this customizations, Table D.8 lists all reconfiguration
conditions that become changed when a reconfiguration involves service addition.

b) Service removal. Similarly, removing an old service is comparable to replac-
ing this old service with a dummy one. Because the latter (by definition) does

7as explained in Section 3.1
8Recall that Figure 3.20 and 3.19 depict the composition of the affected node before and after

adding this filter component, respectively.
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not employ active objects, APnew can safely be omitted. Besides, since service re-
moval does not involve new components, the execution of CCnew and LOnew will
be discarded as well. To illustrate the impact of this customization, Table D.9 lists
all reconfiguration conditions that become affected when a reconfiguration involves
service removal.

4.8 Conclusion

Finally, we conclude this chapter by revisiting the four requirements that NeCoMan
must fulfill to achieve its objectives.

4.8.1 Correct reconfigurations

None of the presented customizations compromise the correctness of the reconfig-
uration process as long as all associated pre-conditions are fulfilled. Besides, the
resulting algorithms meet all (adapted) reconfiguration conditions. So, NeCoMan
can safely apply these customizations without compromising the correct functioning
of the network.

4.8.2 Limited reconfiguration overhead

All customizations seek to optimize the reconfiguration scenario. For the first two
customizations we evaluate their effect on reconfiguration overhead in Appendix E.
The other customizations involve omitting all redundant reconfiguration actions.
These customizations thus optimize the reconfiguration scenario as well.

Note, however, that applying customization “no finishing” does not always un-
deniably reduce the reconfiguration overhead. To safely apply this customization,
the network must be able to deal with potential inconsistencies. These inconsisten-
cies, however, may impact the network performance. When various packets get lost
during reconfiguration, for instance, TCP reduces its congestion window (which af-
fects the network performance). It is clear that such (context specific) performance
penalties must also be taken into account when evaluating the benefit associated
with omitting all finishing actions.

4.8.3 Limited openness

To carry out a tailored reconfiguration, NeCoMan must be able to identify which
customization it can apply to its reconfiguration algorithm9. This involves checking
for each customization if all associated pre-conditions are fulfilled. To accomplish
this, NeCoMan requires from the network administrator to specify (1) the char-
acteristics of the affected services by answering the questions listed in Table 4.5,

9Note that we discuss this customization procedure in more detail in Chapter 7.
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Question Cust.

Does the affected service components encapsulate an isolated network
service, or do they belong to a distributed network service?

N/A

Is the old service component stateless or stateful? 4.2, 4.3
Is the new service component able to process ongoing protocol-
transaction?

4.2, 4.3

Does the new service component restore from or tolerates inconsistent
execution states?

4.3

Do the new component’s (client and/or server) processes employ active
objects?

4.4

Do the affected components encapsulate only client or server processes
instead of both?

4.5

Do the affected components employ a unidirectional or a bidirectional
communication protocol?

4.6

Table 4.5: Local reconfigurations: questions that the network administrator must
answer to specify the service characteristics. The right column lists the related
customizations.

Question Cust.

Does the network tolerate packet re-ordering? 4.2
Do the affected components operate in a best-effort network? 4.3
Does the network restore from or tolerate inconsistent execution states? 4.3
Does the reconfiguration involve service addition, replacement or re-
moval?

4.7

Table 4.6: Local reconfigurations: questions that the network administrator must
answer to specify the reconfiguration semantics.

as well as (2) the reconfiguration semantics (which specify the adaptation proper-
ties defined by the service developer or the network environment) by answering the
questions listed in Table 4.6. This way, NeCoMan restricts the contribution needed
from the network administrator to conduct a (tailored) reconfiguration.

4.8.4 Reusability

The customizations that NeCoMan incorporates are based on re-ordering and omit-
ting the reconfiguration actions of both local algorithms. Hence, even after tailoring
a reconfiguration algorithm only the predefined set of operations that a node’s re-
configuration support must provide will be invoked. These customizations thus
will not compromise NeCoMan’s ability to be reused on top of other flow-oriented,
component-based protocol stack architectures besides DiPS+.
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We conclude that the local reconfiguration algorithms extended with the
customizations presented in this chapter enable NeCoMan to achieve its
objectives.



Chapter 5

Distributed reconfigurations

In the previous two chapters we discussed how NeCoMan conducts local proto-
col stack reconfigurations. When the unit of adaptation is a distributed network
service, however, a reconfiguration obviously involves recomposing multiple stacks.
Changing the composition of these stacks independently from each other may pos-
sibly break the correct functioning of the network. This chapter and the next one,
therefore, focus on how NeCoMan coordinates distributed protocol stack recompo-
sitions.

The structure of this chapter bears a close resemblance to Chapter 3. Sec-
tions 5.1 and 5.2 first specify how to preserve structural integrity and mutually
consistent execution states when adding, replacing, or removing distributed net-
work services. Next, Section 5.3 extends the employed pseudo-formal notation such
that reconfiguration conditions which cover multiple nodes can be expressed as well.

The next chapters focus on NeCoMan’s two distributed reconfiguration algo-
rithms. The first one of these algorithms is used when all nodes employ monitoring
support to drive the affected components to a reconfiguration-safe state. Section 5.4
presents this algorithm and indicates that it fulfills all requires reconfiguration con-
ditions. Next, Section 5.5 explains NeCoMan’s second algorithm for conducting
distributed reconfigurations. In contrast to the first one, NeCoMan uses this algo-
rithm when all nodes deactivate the affected components immediately and use state
transfer support to recover from an inconsistent execution state – that is, instead
of monitoring the affected components until a safe state is reached.

Finally, Section 5.6 concludes this chapter by checking both distributed recon-
figuration algorithms against the four requirements that NeCoMan must fulfill to
achieve its objectives.

113
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Figure 5.1: Consistency preservation when executing distributed recompositions in
(uniform) pipe-and-filter based network architectures

5.1 Structural integrity

Similar to local reconfigurations, preserving the structural integrity of a program-
mable network during and after completing a distributed reconfiguration involves
maintaining referential integrity, interface compatibility, and distributed dependen-
cies.

Referential integrity

How to preserve referential integrity differs in nothing from local reconfigurations.
That is, a reconfiguration middleware must only control local referential integrity
such that after completing a distributed reconfiguration no component bindings are
broken and only the new service components will be invoked. This is because the
components of a distributed network service do not reference each other directly
– that is, by means of remote references.

Interface compatibility

To accomplish a distributed reconfiguration, at every node the interfaces of all com-
ponents that become (re)connected must be compatible. So, again this is identical
to local reconfigurations.

Dependency preservation

Finally, all distributed dependencies between cooperating components must be pre-
served to prevent a distributed reconfiguration from jeopardizing a programmable
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network’s correct functioning. That is, at any moment during the reconfiguration a
correct distributed service composition must be available. To illustrate this, suppose
an MPEG software encoding service is dynamically deployed on two neighboring
nodes. When the MPEG software encoder is installed and activated before bringing
the decoder into use, packets will arrive at their destination in an encoded form.
Breaking the distributed dependencies between collaborating service components
during a reconfiguration thus compromises the correct functioning of the network.

To prevent breaking these distributed dependencies, the recomposition of all
affected nodes must be coordinated. In case of the MPEG service, this includes
among others enforcing that the encoding component will only be activated when
the neighboring node is prepared to decode all encoded packets when they arrive.

5.2 Mutually consistent execution states

Besides maintaining structural integrity, mutually consistent execution states must
be preserved as well to prevent a distributed reconfiguration from compromising the
network’s correct functioning. Similar to local reconfigurations, this implies that
the affected components must be in a reconfiguration-safe state before a recompo-
sition can be executed. How to reach such a safe state, however, slightly differs
from the approaches presented in Chapter 3. The remainder of this subsection,
therefore, describes the two approaches that we adopted to drive the components
of a distributed network service to a reconfiguration-safe state.

5.2.1 Quiescence

The first approach involves completing all ongoing protocol-transactions. This ap-
proach is based on Kramer and Magee’s definition of “quiescence”. In [80], Kramer
and Magee define that a node in a distributed system is quiescent when

1. it is not currently engaged in a transaction that it initiated,

2. it will not initiate new transactions,

3. it is not currently engaged in servicing a transaction, and

4. no transactions have been or will be initiated by other nodes which require
service from this node.

If these conditions are fulfilled, the application state of a node is both consistent and
frozen. That is, it does not include results of partially completed transactions, and
its execution state will not change as a result of new transactions [80]. Quiescent
nodes are thus in a reconfiguration-safe state, and can safely be removed without
leaving the system in an inconsistent state.
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(a) Compression service
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(b) TCP-like service

Figure 5.2: These examples illustrate when collaborating network service compo-
nents reach a quiescent state. The latter is depicted by gray shaded blocks.

Note that quiescence is a stronger pre-condition to reach a reconfiguration-safe
state than what Goudarzi and Kramer proposed in [101]. As explained in Subsec-
tion 3.2.2, Goudarzi and Kramer define that a safe state comes about if the affected
components are not involved in servicing accepted transactions1. This implies that
pending transaction in which the affected components are not yet participating do
not have to be completed. Instead, Goudarzi and Kramer suggest to temporar-
ily ignore these transactions and postpone servicing them until after completing
the reconfiguration [101]. Hence, they neglect the last requirement for quiescence,
which defines that no transactions have been or will be initiated until after com-
pleting the reconfiguration. This requirement is essential, however, when a recon-
figuration involves removing a distributed service. These reconfigurations cannot
be achieved when new service components are expected to complete pending trans-
actions. Therefore, we apply Kramer and Magee’s definition of quiescence to reach
a reconfiguration-safe state.

If we apply this definition to the collaborating components of a distributed
network service, then these components reach a quiescent execution state if

1. all their ongoing protocol-transactions have completed, and

2. they will not initiate new protocol-transactions until after the reconfiguration
actions have terminated.

So, if we apply this to the compression service depicted in Figure 5.2(a), then this
service reaches quiescence once (1) all compressed packets in transit have been
decompressed and (2) the compression component will not be invoked anymore to

1as we already discussed in Section 3.2.2
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Figure 5.3: CuPS assisting NeCoMan in conducting a distributed reconfiguration
of DiPS+ protocol stacks

compress and transmit new data packets. For the TCP-like service depicted in
Figure 5.2(b), quiescence is reached after (1) the last ack-message has returned and
(2) calls to open new connections are intercepted.

How to drive a distributed network service to a quiescent state depends on
the semantics of the collaborating components. Similar to local reconfigurations,
NeCoMan therefore does not bring about this safe state by itself. Instead, to reach
quiescence, NeCoMan coordinates the distributed execution of both operations to
intercept packets and to impose a safe state that the reconfiguration support of the
affected nodes must provide (as illustrated in Figure 5.3)2. To clearly understand
NeCoMan’s first distributed reconfiguration algorithm, we briefly illustrate how
CuPS implements these operations when it has to assist NeCoMan in driving DiPS+
components to a quiescent state.

Intercept packets

A first step to drive the collaborating components of a distributed network service
to a quiescent state involves intercepting all packets (representing service requests)
that introduce the execution of new protocol-transactions. CuPS uses the same
mechanism to interfere with the network traffic as it does for all other approaches to
reach a safe state – that is, it holds up packets at the outports of (local) neighboring
components3.

Besides, recall that only client processes initiate the execution of new protocol-
transactions. When instructed to intercept packets, CuPS therefore only intercepts
packets directed towards the service-external inports of the affected component’s

2these operations have been presented in Section 3.3
3Note that this is different from how Kramer and Magee reach quiescence. As explained in [80],

Kramer and Magee do not intercept packets at component level, but at node level. Hence, they
propose to deactivate all nodes that directly or indirectly invoke the affected node so as to freeze
the latter (instead of intercepting packets at the nodes that will be reconfigured). We already
explained in Section 3.3.2 on page 56 why we did not apply the approach of Kramer and Magee
in the context of programmable networks.
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Figure 5.4: Intercepting packets to bring about quiescence over a distributed com-
pression service.

client processes. When removing a compression service, for instance, this involves
intercepting packets directed to the service-external inports of the compression pro-
cesses (as illustrated in Figure 5.4).

Impose safe state

Once packets are prevented from initiating new service activity, NeCoMan can in-
struct CuPS on every node to impose a safe (quiescent) state. CuPS then monitors
the execution state of the affected processes and, if needed, resumes packets one by
one until all ongoing protocol-transactions complete. On the node equipped with
a compression component, for instance, this involves monitoring until all packets
that the compression component has received are compressed (see Figure 5.2(a)).
In addition, on the node hosting a decompression component CuPS awaits the de-
compression of all compressed data packets in transit. Once this is accomplished,
the decompression component is in a quiescent state as well and both components
can safely be removed.

As an additional example, consider driving a TCP-like service to a quiescent
state. As illustrated in Figure 5.2(b), a client application triggers the execution of
the associated communication protocol by sending invocations to open a connection,
to transmit data, and to close the connection. After intercepting packets that are
directed to the retransmission component’s service-external inports, however, these
packets become held up. On the node that hosts the retransmission component,
CuPS therefore resumes these packets one by one until the CLOSED (quiescent)
state is reached. As illustrated in Figure 5.2(b), the latter is accomplished after
receiving the last ack message. After this occurs, both components of the TCP-like
service are quiescent and can safely be removed without leaving the network in an
inconsistent state.

Similar to local reconfigurations, DiPS+ component developers must provide
“state-monitoring modules” to assist CuPS in determining when a component reaches
a quiescent state. In case of the TCP-like service, for instance, this module checks
if the retransmission component has reached the CLOSED state. One could argue
that this extra user input opposes the requirement for limited user contribution to
conduct a reconfiguration. This has been a conscious choice, however, as otherwise
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NeCoMan must provide (generic) support to drive a wide variety of distributed ser-
vices to a quiescent execution state, which in turn compromises its reusability and
performance. Besides, for the reconfigurations that have been carried out to validate
NeCoMan, the implementation of these state-monitoring modules has restricted to
a single method that checks the execution state of the affected component.

5.2.2 State transfer

Monitoring components until all ongoing protocol-transactions complete can be very
time consuming. This is especially true when many protocol-transactions are active
at the same time (for instance when numerous compressed packets are in transit),
or when it takes a long time for the ongoing protocol-transaction to complete (such
as for the TCP-like service). In both cases driving the affected service compo-
nents to a quiescent state significantly delays the reconfiguration. Besides, in some
cases it may even be impossible to reach a quiescent state, for instance because the
employed protocol is non-deterministic. NeCoMan’s second distributed reconfigu-
ration algorithms, therefore, builds upon a different approach to reach a safe state.
This approach involves (1) deactivating the affected components immediately at
each node, and (2) restoring consistency by transferring the execution state of the
old components to the new ones. How CuPS implements its intercept packets and
impose a safe state operations to assist NeCoMan in reaching a safe state in this
way has already been discussed in detail in Section 3.3.4.

5.3 Extensions to pseudo-formal notation

Similar to local reconfigurations, we will identify a number of reconfiguration con-
ditions that NeCoMan must fulfill to carry out correct distributed reconfigurations.
These reconfiguration conditions specify the order in which NeCoMan must initi-
ate both local and distributed reconfiguration actions. The pseudo-formal notation
that is used in Chapter 3, however, only serves to express local reconfiguration
conditions. We extend the employed notation, therefore, to express distributed
reconfiguration conditions as well.

First, we specify for each reconfiguration action the node on which it becomes
executed. A(nodex) and B(nodey), for instance, denote the execution of reconfig-
uration actions A and B on nodes x and y, respectively. Note that nodes x and y
are instances of the set of nodes that participate in a reconfiguration.

Besides, for each reconfiguration condition we also specify the affected nodes.
Reconfiguration condition

∀nodex : [A(nodex) ← ∀nodey : B(nodey)]

for instance, expresses that NeCoMan can only initiate the execution of action A
on every node x once action B has been completed on every node y (which includes
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node x as well). When action B does not have to be completed on node x, the
previous reconfiguration condition becomes expressed as

∀nodex : [A(nodex) ← ∀nodey 6= nodex : B(nodey)]

Furthermore, we express local reconfiguration conditions as follows:

∀nodex : [A(nodex) ← B(nodex)]

This reconfiguration condition dictates that on every node x action A can only be
initiated once B has been completed on that node.

Finally, we still use the ≡ operator to denote how a high-level action is composed
out of fine-grained actions. For distributed reconfigurations, these high-level actions
(can) cover multiple nodes. Therefore, expression

C ≡ ∀nodex : [A(nodex) f B(nodex)]

denotes that the distributed execution of high-level action C includes the execution
of actions A and B on every node x participating in the reconfiguration.

5.4 Distributed reconfigurations that include reach-
ing quiescence

The remainder of this chapter builds up to both reconfiguration algorithms that
NeCoMan employs for conducting distributed reconfigurations4. Similar to local
reconfigurations, these basic algorithms seek to conduct the distributed reconfigu-
ration of a broad variety of network services. These general-purpose algorithms,
therefore, do not take into account the characteristics of the affected services nor
the reconfiguration semantics.

This section builds up to the algorithm that NeCoMan uses for conducting dis-
tributed reconfigurations that include reaching quiescence. Subsection 5.4.1 first
briefly describes the four (distributed) reconfiguration phases that are involved as
well as the high-level reconfiguration conditions that NeCoMan must fulfill when
executing these phases. Next, Subsection 5.4.2 zooms in on each of these reconfig-
uration phases to elaborate on the distributed execution of the associated reconfig-
uration actions. After that, Subsection 5.4.3 completes the set of reconfiguration
conditions by refining the high-level conditions defined in Subsection 5.4.1. Finally,
Subsection 5.4.4 presents the algorithm itself, and indicates that this algorithm
fulfills all required reconfiguration conditions.

4Recall that NeCoMan uses the first algorithms when the reconfiguration support on every node
drives the affected component to a quiescent execution state – that is, to reach a reconfiguration-
safe state. The other algorithm, in contrast, is used when each node deactivates the affected
component immediately and restores consistency afterwards by capturing and reinstating the cur-
rent execution state.
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5.4.1 High-level reconfiguration phases and conditions

The four reconfiguration phases that are involved are similar as for local recon-
figurations, except that they are targeted at distributed recompositions. To be
precise, these phases include (1) the installation of the new distributed network
service – by making the new service components available on all nodes involved,
(2) the activation of the new distributed network service – by bringing these new
service components into use, (3) finishing the old distributed network service – by
driving the old service components to a quiescent state, and (4) the removal of the
old distributed network service – by deleting the old service components from all
participating nodes. These four phases will be denoted as ISnew, ASnew, FSold,
and RSold, respectively.

Furthermore, three high-level reconfiguration conditions need to be fulfilled to
carry out correct distributed-service reconfiguration:

1. The new network service can only be activated safely when all its components
are made available on all programmable nodes where needed. This is a trivial
reconfiguration condition, which can be expressed as

ASnew ← ISnew (H.1)

2. The new network service can only be activated safely when all components
that belong to the old network service have reached a quiescent state – that is,
when the old service is finished. We formalize this reconfiguration condition
as

ASnew ← FSold (H.2)

3. The removal of the old network service (RSold) can only be initiated safely
when all its components have reached a reconfiguration-safe state. We for-
malize this reconfiguration condition as follows:

RSold ← FSold (H.3)

5.4.2 Detailed overview of each reconfiguration phase

We now zoom in on each of these four distributed reconfiguration phases. Note
that the implementation of these phases introduces no new reconfiguration actions.
In contrast to local reconfigurations, however, some reconfiguration actions become
redundant. Besides, the distributed execution of some of the remaining reconfigura-
tion actions must be synchronized. As will be clarified soon, all this results in new
reconfiguration conditions that NeCoMan must fulfill to conduct correct distributed
reconfigurations.
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Figure 5.5: Installation of new reliability
components
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Figure 5.6: Finishing old reliability com-
ponents

Installation phase

The installation of a new distributed service involves loading the new components on
all affected nodes and binding their outports. To illustrate this installation phase,
Figure 5.5 sketches the installation of Rnew and Anew to replace Rold and Aold.
The black bold components and bindings in this figure symbolize components and
bindings that are created after completing the installation phase.

NeCoMan implements this distributed installation phase by executing reconfig-
uration actions CCnew, LOext

new and LOint
new on every node where needed. Hence, we

express the implementation of this distributed installation phase as

ISnew ≡ ∀nodex : [CCnew(nodex) f LOext
new(nodex) f LOint

new(nodex)] (P.1)

Recall that NeCoMan must fulfill reconfiguration condition (3.1) to correctly
install new service components5. In case of distributed reconfigurations, this condi-
tion must be fulfilled at every affected node. We therefore redefine conditions (3.1)
as

∀nodex : [LOext
new(nodex) ∧ LOint

new(nodex) ← CCnew(nodex)] (5.1)

Furthermore, because the newly installed components are not enabled yet to re-
ceive packets, there is no need to synchronize their distributed installation. Hence,
no distributed reconfiguration conditions apply to the execution of the reconfigura-
tion actions that are involved.

Finishing phase

NeCoMan drives the old service components to a quiescent execution state by in-
structing the affected nodes to

5This reconfiguration condition imposes to only bind a component’s outports when the associ-
ated component has been created.
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• intercept packets that are directed towards the old components’ service-external
inports, so as to prevent these components’ client processes from accepting
and processing new service requests, and to

• impose a safe state over these components’ collaborating client and server
processes by monitoring them and resuming packets until quiescence comes
about.

To illustrate (part of) this finishing phase, Figure 5.6 depicts how new packets di-
rected to Rold are intercepted so as to drive the old reliability service to a quiescent
state. Furthermore, NeCoMan implements this finishing phase by executing recon-
figuration actions IP client

old , ISSclient
old , and ISSserver

old on every node where needed6.
Hence, we express the implementation of this distributed finishing phase as

FSold ≡ ∀nodex : [IP client
old (nodex) f ISSclient

old (nodex) f ISSserver
old (nodex)] (P.2)

To correctly finish a distributed service, NeCoMan must coordinate the order
in which these actions are executed on every node. To be precise, NeCoMan can
only instruct a node x to impose a safe state over its client processes once packets
directed towards the service-external inports of these processes are intercepted. This
reconfiguration condition can be denoted as7

∀nodex : [ISSclient
old (nodex) ← IP client

old (nodex)] (5.2)

Besides, NeCoMan must also coordinate the order in which the old client and
server processes are driven towards a quiescent execution state. Because a client
process initiates the activity of a server process, NeCoMan should only instruct
a node x to impose a safe state over its server processes once all invoking client
processes (which can be located on every node y 6= x ) are quiescent. We express
this reconfiguration condition as

∀nodex : [ISSserver
old (nodex) ← ∀nodey 6= nodex : ISSclient

old (nodey)] (5.3)

Activating every new service component

To activate a new distributed service, NeCoMan instructs all affected nodes to
bring the new components into use8. To illustrate (part of) this activation phase,

6Note that, in contrast to local reconfigurations, IP server
old

is not included anymore.
7This reconfiguration condition is identical to condition (3.2)
8As explained in Section 3.5.2, the activation of new service components involves

• rebinding all affected inports, such that packets become delivered to the new service com-
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Figure 5.7: Binding inports of new reli-
ability components
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Figure 5.8: Releasing intercepted pack-
ets

Figure 5.7 depicts redirecting (intercepted) packets towards the inports of compo-
nents Rnew and Anew. This involves unlinking the affected inports of Rold and Aold

(symbolized by grey bold connections), and simultaneously linking those of Rnew

and Anew (depicted by black bold connections). In addition, Figure 5.8 illustrates
resuming the intercepted packets.

NeCoMan implements this distributed activation phase by executing LIint
old−new,

LIext
old−new, AP client

new , AP server
new and RP client

new on every node where needed. Hence,
we express the implementation of this activation phase as

ASnew ≡ ∀nodex :[LIint
old−new(nodex) f LIext

old−new(nodex)f

AP client
new (nodex) f AP server

new (nodex) f RP client
new (nodex)]

(P.3)

Note that, in contrast to the local activation of a service component, distributed
service activation in this case does not involve the execution of RP server

new . This
is because packets directed to server processes are not intercepted when bringing
about quiescence.

To correctly activate a new distributed service, NeCoMan must coordinate the
order in which these actions are executed on every node. In general, a component
C can only be activated safely when all other components on which C depends
are already operational and prepared to accept and service C ’s invocations. For
distributed network services, these dependencies are formalized by the employed
communication protocol. Safe activation of a distributed network service, there-
fore, requires to first enable the execution of this new communication protocol by
making it possible for the new (reactive) service components to process each others
invocations. This involves rebinding all inports and initiating the active objects of
the new collaborating components9. Once this is accomplished, intercepted packets
can safely be released to initiate the execution of the new protocol.

ponents after resuming the intercepted packet flows,

• activating all new collaborating client and server processes, and

• resuming packets that are intercepted to finish the old service.

9Recall that outports are already bound during installation.
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Figure 5.9: Removal of old reliability components

Hence, NeCoMan must synchronize the distributed execution of the reconfigu-
ration actions that implement this activation phase. To be precise, NeCoMan can
only instruct node x to release intercepted packets if

1. the service-external and service-internal inports of the new client processes on
node x have been bound correctly, and

2. the active objects that these client processes employ have been started, and

3. the service-internal inports of the new server processes (located on every node
y 6= x ) that will service requests from the new client processes located on
node x have been bound correctly, and

4. the active objects that these server processes employ have also been started.

We denote this reconfiguration condition as follows:

∀nodex :[RP client
new (nodex) ←

LIint
old−new(nodex) ∧ LIext

old−new(nodex) ∧ AP client
new (nodex)∧

∀nodey 6= nodex : [LIint
old−new(nodey) ∧ AP server

new (nodey)]]

(5.4)

Removal phase

Removing the old distributed network services involves unlinking and deleting every
old service component from the affected nodes. To illustrate this, Figure 5.9 sketches
the removal of the old reliability service. NeCoMan implements this distributed
removal phase by executing DCold, UOext

old , and UOext
old on every node where needed.

Hence, we express the implementation of this removal phase as

RSold ≡ ∀nodex : [DCold(nodex) f UOext
old (nodex) f UOint

old(nodex)] (P.4)
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Recall that NeCoMan must fulfill reconfiguration condition (3.6) to correctly
remove old service components10. In case of distributed reconfigurations, this con-
dition must be fulfilled at every affected node. We therefore redefine condition (3.6)
as

∀nodex : [DCold(nodex) ←

UOext
old (nodex) ∧ UOint

old(nodex) ∧ LIext
old−new(nodex) ∧ LIext

old−new(nodex)]
(5.5)

Besides, because the old reliability components must be in a reconfiguration-safe
state when being removed, their removal cannot compromise the correct operation
of the network. So, there is no need to synchronize the distributed execution of the
reconfiguration actions that are involved.

5.4.3 Refining high-level reconfiguration conditions

Figure 5.10 depicts a preliminary partial ordering of the employed reconfiguration
actions that NeCoMan must fulfill to conduct correct distributed reconfigurations.
This ordering results from the reconfiguration conditions specified in the previous
two subsections. To complete this partial ordering, we refine the high-level recon-
figuration conditions presented in Subsection 5.4.1. This will be accomplished in
a similar way as for NeCoMan’s local reconfigurations. First, for each high-level
reconfiguration condition, we substitute ISnew, FSold, ASnew and RSold for ex-
pressions (P.1), (P.2), (P.3), and (P.4), respectively. Next, we investigate if the
resulting reconfiguration condition can be made less stringent without compromis-
ing the correctness of the reconfiguration scenario.

Installing new service components before activation (H.1)

Let us start with reconfiguration condition (H.1), which imposes to only activate
the new network service when all its components are installed properly on the
nodes where needed. To refine this condition, we first replace ISnew and ASnew by
expressions (P.1) and (P.3), respectively. This results in the following expression

∀nodex :[LIint
old−new(nodex) ∧ LIext

old−new(nodex)∧

AP client
new (nodex) ∧ AP server

new (nodex) ∧ RP client
new (nodex)

← ∀nodey : [CCnew(nodey) ∧ LOext
new(nodey) ∧ LOint

new(nodey)]]

(I.1)

This condition can be made less stringent without compromising the reconfig-
uration correctness. To illustrate this, we split up condition (I.1) in (I.2a), (I.2b),

10This (local) condition imposes to only delete a component after disconnecting all its commu-
nication ports.
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Figure 5.10: Preliminary partial ordering of NeCoMan’s reconfiguration actions
for carrying out distributed reconfigurations that include reaching quiescence. Ac-
cording to the associated reconfiguration conditions, each of these reconfiguration
actions can only be initiated safely if all its referring actions are completed.

and (I.2c), and reduce each of these conditions.

∀nodex : [LIint
old−new(nodex) ∧ LIext

old−new(nodex)

← ∀nodey : [CCnew(nodey) ∧ LOext
new(nodey) ∧ LOint

new(nodey)]]
(I.2a)

∀nodex : [AP client
new (nodex) ∧ AP server

new (nodex)

← ∀nodey : [CCnew(nodey) ∧ LOext
new(nodey) ∧ LOint

new(nodey)]]
(I.2b)

∀nodex :[RP client
new (nodex)

← ∀nodey : [CCnew(nodey) ∧ LOext
new(nodey) ∧ LOint

new(nodey)]]
(I.2c)

Condition (I.2a). Unlike what condition (I.2a) defines, there is no need to de-
lay the execution of LIint

old−new and LIext
old−new on node x until CCnew, LOext

new, and
LOint

new have been completed on every affected node y. Instead, a new component’s
service-external and service-internal inports can safely be bound on node x once
this component has been made available on that node. Hence, we can reduce con-
dition (I.2a) to

∀nodex : [LIint
old−new(nodex) ∧ LIext

old−new(nodex) ← CCnew(nodex)] (5.6)
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Condition (I.2b). Condition (I.2b), in turn, can be reduced in a similar way.
Starting the active objects of the new client and server processes on node x can be
accomplished without waiting for CCnew, LOext

new, and LOint
new to complete on every

node y that is involved in this reconfiguration. Instead, these active objects can
safely be started on node x once the component where they belong to is available
on that node. This is because the reconfiguration scenario that we discuss here does
not support imposing a safe state by transferring the affected components’ execution
state. Hence, starting a component’s active objects will not cause service activity
– that is, to process all (ongoing) requests that were interrupted when deactivating
the old processes. So, we reduce condition (I.2b) to

∀nodex : [AP client
new (nodex) ∧ AP server

new (nodex) ← CCnew(nodex)] (5.7)

Condition (I.2c). Finally, we examine condition (I.2c), which dictates that RP client
new

can only be executed on node x when CCnew, LOext
new, and LOint

new have been com-
pleted on every node y (thus including node x as well). Again, this pre-condition
can safely be made less stringent.

First, there is no need to wait until all service-external outports on node x are
connected before initiating RP client

new . These outports will only be used by the new
server processes on node x, which do not collaborate with the new client processes
that are brought in use by executing RP client

new (nodex). Hence, condition (I.2c) can
safely be reduced to

∀nodex :[RP client
new (nodex) ← CCnew(nodex) ∧ LOint

new(nodex)∧

∀nodey 6= nodex : [CCnew(nodey) ∧ LOint
new(nodey) ∧ LOext

new(nodey)]]

(I.3)

Second, the right operand of this expression can again be made less strin-
gent. When condition (5.1) is fulfilled, then LOint

new(nodex) and LOext
new(nodex) will

only be initiated once CCnew(nodex) is completed. Hence, we can safely remove
CCnew(nodex) and CCnew(nodey) from the right operand of condition (I.3), which
results in

∀nodex :[RP client
new (nodex) ← LOint

new(nodex)∧

∀nodey 6= nodex : [LOint
new(nodey) ∧ LOext

new(nodey)]]
(5.8)

Conclusion. So, we conclude that to satisfy condition (H.1), NeCoMan must
meet reconfiguration conditions (5.1), (5.6), (5.7), and (5.8).
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Finishing old service components before activating new ones (H.2)

Next, we refine reconfiguration condition (H.2). This condition dictates to only
activate the new network service when all components that belong to the old service
have reached a reconfiguration-safe state. Replacing FSold and ASnew in (H.2) by
expressions (P.2) and (P.3) results in

∀nodex :[LIint
old−new(nodex) ∧ LIext

old−new(nodex)∧

AP client
new (nodex) ∧ AP server

new (nodex) ∧ RP client
new (nodex)

← ∀nodey : [IP client
old (nodey) ∧ ISSclient

old (nodey) ∧ ISSserver
old (nodey)]]

(I.4)

We can weaken this condition without compromising the correct functioning of
the network and its services. We do this in two steps. First, we simplify condi-
tion (I.4) by relying on reconfiguration condition (5.2). This reconfiguration con-
dition imposes to only initiate ISSclient

old on node x once IP client
old has completed

on that node. So, given that this condition will be fulfilled, we can safely remove
IP client

old from the right operand of condition (I.4). This results in

∀nodex :[LIint
old−new(nodex) ∧ LIext

old−new(nodex)∧

AP client
new (nodex) ∧ AP server

new (nodex) ∧ RP client
new (nodex)

← ∀nodey : [ISSclient
old (nodey) ∧ ISSserver

old (nodey)]]

(I.5)

Next, we split up condition (I.5) into (I.6a), (I.6b), and (I.6c), and reduce each
of these conditions.

∀nodex :[LIint
old−new(nodex) ∧ LIext

old−new(nodex)

← ∀nodey : [ISSclient
old (nodey) ∧ ISSserver

old (nodey)]]
(I.6a)

∀nodex :[AP client
new (nodex) ∧ AP server

new (nodex)

← ∀nodey : [ISSclient
old (nodey) ∧ ISSserver

old (nodey)]]
(I.6b)

∀nodex :[RP client
new (nodex)

← ∀nodey : [ISSclient
old (nodey) ∧ ISSserver

old (nodey)]]
(I.6c)

Condition (I.6a). Condition (I.6a) expresses that NeCoMan can only execute
LIint

old−new and LIext
old−new on node x once all client and server processes on every

node y are finished. This pre-condition can safely be made less stringent. To be
precise, NeCoMan does not have to wait until all server processes located on every
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(b) Employed communication protocol

Figure 5.11: The client process is quiescent after sending message Z. The server
process, in turn, reaches quiescence after receiving and processing this message Z.

node y 6= x have reached quiescence before executing LIint
old−new and LIext

old−new on
node x.

To illustrate this, consider the setup in Figure 5.11(a). Both components com-
municate by the protocol depicted in Figure 5.11(b). Once the client process is
quiescent (that is, after sending message Z), it will not be invoked anymore by the
collaborating server process11. NeCoMan therefore can safely execute LIext

old−new

and LIint
old−new on node x without waiting until the server process on node y reaches

quiescence as well (that is, until is has received and processed message Z). So, we
can weaken condition (I.6a) to

∀nodex : [LIint
old−new(nodex) ∧ LIext

old−new(nodex)

← ISSclient
old (nodex) ∧ ISSserver

old (nodex)∧

∀nodey 6= nodex : ISSclient
old (nodey)]

(I.7)

Furthermore, we can make the right operand of condition (I.7) less stringent by
relying on condition (5.3). The latter imposes to only execute ISSserver

old on node x
once ISSclient

old has been completed on every node y 6= x. Hence, condition (I.7) can
be reduced to

∀nodex :[LIint
old−new(nodex) ∧ LIext

old−new(nodex)

← ISSclient
old (nodex) ∧ ISSserver

old (nodex)]
(I.8)

Finally, because only client processes expose service-external inports, condi-
tion (I.8) can safely be weakened to conditions (5.9) and (5.10).

∀nodex : [LIint
old−new(nodex) ← ISSclient

old (nodex) ∧ ISSserver
old (nodex)] (5.9)

∀nodex : [LIext
old−new(nodex) ← ISSclient

old (nodex)] (5.10)

11If the server process still invokes the client process, then this client process did not complete
its participation in all ongoing protocol-transactions, and therefore was not yet quiescent.
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Condition (I.6b). Next, we reduce condition (I.6b), which dictates to only start
the active objects of the new component’s client and server processes once every old
process on each node y has reached quiescence. This pre-condition can safely be
weakened. Similar to the execution of LIint

old−new and LIext
old−new, starting the active

objects of the new client and server processes on node x can be accomplished once
ISSclient

old and ISSserver
old are completed on node x. Therefore, we can safely reduce

condition (I.6b) to

∀nodex :[AP client
new (nodex) ∧ AP server

new (nodex)

← ISSclient
old (nodex) ∧ ISSserver

old (nodex)]
(I.9)

In addition, there is no need to wait for both the old client and server processes
on node x to reach a safe state before activating the new client and server process on
that node. This is because these client and server processes operate independently
from each other. So, condition (I.9) can safely be reduced to

∀nodex : [AP client
new (nodex) ← ISSclient

old (nodex)] (5.11)

∀nodex : [AP server
new (nodex) ← ISSserver

old (nodex)] (5.12)

Condition (I.6c). Finally, we examine condition (I.6c). This condition imposes
to only release intercepted packets once the old client and server processes on every
node y are quiescent. Again this condition can be made less stringent. Once NeCo-
Man instructs node x to release all intercepted packets, the new client processes
located on that node will start collaborating with new server processes that may
be located on every node y 6= x. NeCoMan therefore must only wait for the old
counterparts of these collaborating processes to reach quiescence before initiating
RP client

new – that is, instead of waiting until all processes on every node are quiescent.
Consequently, we can safely weaken condition (I.6c) to

∀nodex :[RP client
new (nodex) ← ISSclient

old (nodex)∧

∀nodey 6= nodex : ISSserver
old (nodey)]

(I.10)

However, this condition is already fulfilled when conditions (5.4), (5.9), and
(5.10) are met12.

12Condition (5.4) imposes to only execute RP client
new on node x once LIint

old−new
, LIext

old−new
and

AP client
new are completed on that node x, and LIint

old−new
and AP server

new are completed on every

other node y 6= x. According to condition (5.10), LIext
old−new

(nodex) in turn can only be executed

when ISSclient
old

(nodex) has completed. Besides, condition (5.9) dictates that LIint
old−new

(nodey)

can only be executed once ISSclient
old

(nodey) and ISSserver
old

(nodey) are completed. Hence, condi-
tion (I.6c) becomes redundant and thus can safely be removed.
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Conclusion. To conclude, NeCoMan thus meets condition (H.2) when it fulfills
conditions (5.2), (5.3), (5.4), (5.9), (5.10), (5.11), and (5.12).

Finishing old service components before removal (H.3)

Finally, reconfiguration condition (H.3) can be refined in an analogous way. This
reconfiguration condition imposes to only initiate the removal of the old network
service when all its components are finished. Substituting FSold and RSold in (H.3)
by expressions (P.2) and (P.4) results in

∀nodex : [DCold(nodex) ∧ UOext
old (nodex) ∧ UOint

old(nodex)

← ∀nodey : [IP client
old (nodey) ∧ ISSclient

old (nodey) ∧ ISSserver
old (nodey)]]

(I.11)

We can weaken this condition in four steps. First, similar to the refinement
of condition (H.2), the right operand of this condition can be made less stringent.
According to reconfiguration condition (5.2), ISSclient

old can only be initiated on
node x once IP client

old has completed on that node. Therefore we can safely reduce
condition (I.11) to

∀nodex : [DCold(nodex) ∧ UOext
old (nodex) ∧ UOint

old(nodex)

← ∀nodey : [ISSclient
old (nodey) ∧ ISSserver

old (nodey)]]
(I.12)

Next, we can again make the right operand of this expression less stringent. Once
the client processes on node x are quiescent, they will not be invoked anymore
by collaborating server processes. NeCoMan therefore can safely execute UOint

old ,
UOext

old and DCold on node x without waiting until the server processes on node y
are quiescent. Hence, we can safely weaken the right operand of expression (I.12),
which results in

∀nodex :[DCold(nodex) ∧ UOext
old (nodex) ∧ UOint

old(nodex)

← ISSclient
old (nodex) ∧ ISSserver

old (nodex)∧

∀nodey 6= nodex : ISSclient
old (nodey)]

(I.13)

In addition, because reconfiguration condition (5.3) dictates NeCoMan to only
execute ISSserver

old on node x once ISSclient
old has been completed on every node y 6= x,

we can reduce condition (I.13) to

∀nodex :[DCold(nodex) ∧ UOext
old (nodex) ∧ UOint

old(nodex)

← ISSclient
old (nodex) ∧ ISSserver

old (nodex)]
(I.14)
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Finally, we split up condition (I.14) into (I.15a), (I.15b), and (I.15c), and exam-
ine each of these conditions.

∀nodex : [UOint
old(nodex) ← ISSclient

old (nodex) ∧ ISSserver
old (nodex)] (I.15a)

∀nodex : [UOext
old (nodex) ← ISSclient

old (nodex) ∧ ISSserver
old (nodex)] (I.15b)

∀nodex : [DCold(nodex) ← ISSclient
old (nodex) ∧ ISSserver

old (nodex)] (I.15c)

Condition (I.15a). Condition (I.15a) cannot be reduced. Both a component’s
client and server processes may employ service-internal outports. These processes
must be quiescent before NeCoMan can unbind the associated outports. Reconfig-
uration condition (5.13) therefore is identical to (I.15a).

∀nodex : [UOint
old(nodex) ← ISSclient

old (nodex) ∧ ISSserver
old (nodex)] (5.13)

Condition (I.15b). Because only server processes employ service-external out-
ports, NeCoMan does not have to wait for ISSclient

old to complete on node x before
unbinding the old component’s service-external outports on that node. So, condi-
tion (I.15b) can safely be reduced to

∀nodex : [UOext
old (nodex) ← ISSserver

old (nodex)] (5.14)

Condition (I.15c). Finally, condition (I.15c) is already fulfilled when condi-
tions (5.5), (5.13) and (5.14) are met. Condition (I.15c) therefore becomes re-
dundant and can safely be removed.

Conclusion. To conclude, NeCoMan thus meets reconfiguration condition (H.3)
when it fulfills conditions (5.2), (5.3), (5.5), (5.13), and (5.14).

Partial ordering of reconfiguration actions

By combining all these reconfiguration conditions (which are summarized in Ta-
ble 5.1), we can specify the partial ordering of reconfiguration actions that NeCo-
Man must fulfill when recomposing node x as part of a distributed reconfiguration.
This ordering is illustrated in Figure 5.12.
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reconfiguration condition h-l
cond.

place

(5.1)
∀nodex : [LOext

new(nodex) ∧ LOint
new(nodex) ←

p2/p17CCnew(nodex)]

(5.2) ∀nodex : [ISSclient
old (nodex) ← IP client

old (nodex)] p5/p20

(5.3)
∀nodex : [ISSserver

old (nodex) ←
p6/p21∀nodey 6= nodex : ISSclient

old (nodey)]

(5.4)

∀nodex : [RP client
new (nodex) ← LIint

old−new(nodex)∧

p11/p26

LIext
old−new(nodex) ∧ AP client

new (nodex)∧
∀nodey 6= nodex : [LIint

old−new(nodey)∧
AP server

new (nodey)]]

(5.5)
∀nodex : [DCold(nodex) ← UOext

old (nodex)∧
p14/p29UOint

old(nodex) ∧ LIext
old−new(nodex)∧

LIint
old−new(nodex)]

(5.6)
∀nodex : [LIint

old−new(nodex) ∧ LIext
old−new(nodex) ←

(H.1) p2/p17CCnew(nodex)]

(5.7)
∀nodex : [AP client

new (nodex) ∧ AP server
new (nodex) ←

(H.1) p2/p17CCnew(nodex)]

(5.8)
∀nodex : [RP client

new (nodex) ← LOint
new(nodex)∧

(H.1) p6/p21∀nodey 6= nodex : [LOint
new(nodey)∧

LOext
new(nodey)]]

(5.9)
∀nodex : [LIint

old−new(nodex) ←
(H.2) p7/p22

ISSclient
old (nodex) ∧ ISSserver

old (nodex)]

(5.10) ∀nodex : [LIext
old−new(nodex) ← ISSclient

old (nodex)] (H.2) p6/p21

(5.11) ∀nodex : [AP client
new (nodex) ← ISSclient

old (nodex)] (H.2) p6/p21

(5.12) ∀nodex : [AP server
new (nodex) ← ISSserver

old (nodex)] (H.2) p7/p22

(5.13)
∀nodex : [UOint

old(nodex) ←
(H.3) p7/p22ISSclient

old (nodex) ∧ ISSserver
old (nodex)]

(5.14) ∀nodex : [UOext
old (nodex) ← ISSserver

old (nodex)] (H.3) p7/p22

Table 5.1: Overview of all reconfiguration conditions that must be fulfilled to cor-
rectly execute distributed reconfigurations that include reaching quiescence.

5.4.4 Reconfiguration algorithm

We now present the algorithm that NeCoMan uses to execute these distributed re-
configurations. To simplify its representation, the model of this algorithm (which is
illustrated in Figure 5.13) describes a distributed reconfiguration that involves only



5.4 Distributed reconfigurations that include reaching quiescence 135

��
���
���	�
�

����

�

��


�
���	�
�

����

�

��
���
��

�
�

����

�

��
���
��

�
�

����

�

���������������

��
���
���	�
�

����
��

��
�
��
�

�
�

����
��

����� �����

���
�
����

�

��


�
�
�

����

�

��
���
�
�

����

�

����� �����

�����
����

�

��
���


�

����

�

��
���
���

����

�

����������

��
���
��

���

����

�

���
���
��

���

����
��

���
���
��

���

����

�

���
�
��
�

���

����

�

����� �����

��
���
�
�

����
��

���	�

��


�
�
�

����
��

���	�

���	�

���
�

��
�
��
�

�
�

����

�

�����

�����

���
�
����������

������

������

���
�

������

������ ������

������

���
�

Figure 5.12: Overview of the partial ordering of NeCoMan’s reconfiguration actions
for carrying out distributed recompositions that include reaching quiescence.

two programmable nodes. Besides, since both nodes are reconfigured concurrently,
the initial marking of this Petri net model is defined by two tokens located at places
p1 and p16.

As the model in Figure 5.13 specifies, on every node NeCoMan starts this recon-
figuration by executing the reconfiguration actions that implement the installation
phase. Next, the reconfiguration actions for driving the old components to a quies-
cent execution state are carried out. After that, NeCoMan initiates the reconfigu-
ration actions responsible for activating the new service components. Finally, the
reconfiguration actions for removing the old components are executed. To clarify
all possible execution states, Table 5.2 lists the reconfiguration actions that NeCo-
Man has executed when a token reaches places p1 to p15

13. Besides, Appendix G
exemplifies this algorithm with the dynamic replacement of the reliability service.

As explained in the previous sections, NeCoMan must synchronize the dis-
tributed execution of several reconfiguration actions. Reconfiguration condition
(5.3), for instance, imposes to only initiate the execution of ISSserver

old on node x
once ISSclient

old has completed on every node y 6= x. To accomplish this, NeCoMan
exchanges synchronization message A between the affected nodes (see Figure 5.13).

13Note that these places are associated with node A. Places p16 to p30 represent the correspond-
ing places related to node B. The reconfiguration actions that are executed when a token reaches
places p16 to p30, therefore, are similar as for reaching places p1 to p15.
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Figure 5.13: Petri net representation of the algorithm that NeCoMan uses for con-
ducting distributed reconfigurations that include reaching quiescence.
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place reconfiguration actions
that are completed

place reconfiguration actions
that are completed

p1 none p8 ac(p7) ∧ AP server
new (nodea)

p2 CCnew(nodea) p9 ac(p8) ∧ AP client
new (nodea)

p3 ac(p2) ∧ LOext
new(nodea) p10 ac(p9) ∧ LIint

old−new(nodea)
p4 ac(p3) ∧ LOint

new(nodea) p11 ac(p10) ∧ LIext
old−new(nodea)∧

p5 ac(p4) ∧ IP client
old (nodea) ISSserver

old (nodeb)∧
p6 ac(p5) ∧ ISSclient

old (nodea)∧ AP server
new (nodeb)∧

CCnew(nodeb)∧ AP client
new (nodeb)∧

LOext
new(nodeb)∧ LIint

old−new(nodeb)
LOint

new(nodeb)∧ p12 ac(p11) ∧ RP client
new (nodea)

IP client
old (nodeb)∧ p13 ac(p12) ∧ UOint

old(nodea)
ISSclient

old (nodeb) p14 ac(p13) ∧ UOext
old (nodea)

p7 ac(p6) ∧ ISSserver
old (nodea) p15 ac(p14) ∧ DCold(nodea)

Table 5.2: NeCoMan’s reconfiguration algorithm to conduct distributed recompo-
sitions that include reaching quiescence: definition of places p1 to p15. Note that
ac(px) represents all reconfiguration actions that have been completed when the
token reaches place px.

To be precise, once the execution of ISSclient
old has completed on node x, NeCoMan

broadcasts this synchronization message to all its peer nodes. On these nodes,
NeCoMan then awaits the arrival of all expected instances of message A before ini-
tiating the execution of ISSserver

old . The Petri net model specifies this by the weight
of the outgoing arcs of places p6 and p21

14.

Furthermore, according to reconfiguration conditions (5.4) and (5.8), NeCoMan
can only safely initiate the execution of RP client

new on node x when LOint
new, LOext

new,
LIint

old−new, and AP server
new are completed on every other node y 6= x. As one can de-

duce from Figure 5.13, these four actions are completed after carrying out LIint
old−new.

NeCoMan therefore broadcasts synchronization message B to its peer nodes once
this reconfiguration action is executed. Furthermore, the weight of the outgoing arcs
of places p11 and p26 indicate that RP client

new can only be executed after receiving all
expected instances of message B.

Finally, to illustrate that the algorithm depicted in Figure 5.13 fulfills all recon-
figuration actions, the right column of Table 5.1 identifies for each reconfiguration
condition the place as from which the associated pre-condition is fulfilled. This
way, one can verify for each reconfiguration action that the associated conditions
are met. Furthermore, Appendix I demonstrates in more detail that this is the case.

14Note that this weight is 2 for the algorithm modelled in Figure 5.13. The weight of all other
arcs is 1, and therefore has not been depicted.
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5.5 Distributed reconfigurations that include trans-
ferring execution state

NeCoMan uses a different reconfiguration algorithm when the affected nodes deacti-
vate components immediately and restore consistency afterwards by capturing and
reinstating the current execution state – that is, instead of driving these compo-
nents to a quiescent execution state. As we discuss in the remainder of this section,
reaching a safe state in this way influences the reconfiguration scenario. Besides,
NeCoMan also restricts the reconfigurations that can be executed in this case.

Service replacement only

To enable restoring consistency through state transfer, a reconfiguration must be
restricted to service replacement only. Transferring the execution state of both
collaborating reliability components, for instance, obviously requires for the old
as well as the new service components to be present. Hence, service addition or
removal cannot be supported.

No coordinated finishing

Finishing the old components by deactivating their processes immediately and trans-
ferring their execution state does not require distributed coordination. Recall that
to reach a quiescent execution state, all ongoing protocol-transactions must be com-
pleted and new protocol-transactions must be prevented from being initiated. As
defined by reconfiguration condition (5.3), this requires to coordinate the distributed
execution of ISSclient

old and ISSserver
old . When the affected components become de-

activated immediately, however, no distributed consistent execution state will be
reached. This is because the status of ongoing protocol-transactions is not taken
into account. Consequently, deactivating collaborating components (such as Rold

and Aold) and transferring their execution state can be accomplished independently
on all affected nodes. This makes reconfiguration condition (5.3) redundant.

No coordinated activation

When deactivating collaborating components (such as Rold and Aold) indepen-
dently from each other, there may still be packets in transit that belong to ongoing
protocol-transactions at the moment when new components are brought in use. To
preserve consistency, therefore, these new components must be able to continue
processing all ongoing protocol-transactions. In case of the reliability service, for
instance, both Rnew and Anew must be able to process all packets in transit that
Aold and Rold have sent, respectively. Besides, NeCoMan also requires that the old
components can process requests that new collaboration components may initiate
once they are brought into use. For the reliability service, this implies that Rold

and Aold must be able to process packets sent by Anew and Rnew, respectively.
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The activation of such compatible components does not have to be coordinated.
For instance, there is no need to wait until Anew is brought into use to process
Rnew’s packets before activating the latter if Aold is able to service data-packets
transmitted by Rnew, and Rnew can process ack-packets that return from Aold.
Reconfiguration conditions (5.4) and (5.8) thus become redundant as well in this
case.

Conclusion

To summarize, when programmable nodes impose a safe state by deactivating the
affected components immediately and transferring their execution state, then NeCo-
Man (1) only supports service replacement which involves compatible components,
and (2) does not coordinate the distributed execution of reconfiguration actions
to finish the old service and to activate the new one. So, in this case NeCoMan
recomposes all nodes independently15. The algorithm that conducts these recon-
figurations, therefore, executes on all affected nodes NeCoMan’s local algorithm to
replace components of distributed network services16. To illustrate this, Figure K.1
depicts the Petri net model of this distributed reconfiguration algorithm.

5.6 Conclusion

To conclude, we check both distributed reconfiguration algorithms against the four
requirements that NeCoMan must fulfill to achieve its objectives.

5.6.1 Correct reconfigurations

As demonstrated in Section 5.4.4, the first distributed reconfiguration algorithm
meets all conditions that are imposed to conduct correct reconfigurations. For
the second algorithm to conduct safe reconfigurations, a reconfiguration must be
restricted to the replacement of compatible service components. This has been
discussed in the previous section.

5.6.2 Limited reconfiguration overhead

Similar to the local reconfiguration algorithms, both distributed reconfiguration al-
gorithms do not take into account the service characteristics nor the reconfiguration
semantics. For a number of services, therefore, the conducted reconfiguration will
not be optimized.

15That is, without coordinating the distributed execution of the reconfiguration actions that are
involved

16This algorithm has been presented in Subsection 3.5.4.
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5.6.3 Limited openness

Again similar to the local reconfiguration algorithms, both distributed algorithms
coordinate the safe reconfiguration of an extensive set of network services. For
many services, however, these general-purpose reconfiguration algorithms must be
tailored. To illustrate this, Figure G.2 depicts the customized version of NeCoMan’s
first distributed reconfiguration algorithm for replacing a reliability service which
involves reaching quiescence. To restrict the contribution needed from a network
administrator to tailor a reconfiguration, NeCoMan must apply such customizations
by itself, starting from a declarative description of these service characteristics and
reconfiguration semantics.

5.6.4 Reusability

Both distributed algorithms employ no other reconfiguration actions than those used
for implementing local reconfigurations. Hence, only the predefined set of operations
that a node’s reconfiguration support must provide will be invoked. So, NeCoMan
is prepared to recompose various flow-oriented, component-based protocol stack
architectures.

To fully comply with the second and the third requirement, NeCoMan
must customize both distributed reconfiguration algorithms (if needed) to
fully exploit the service specific characteristics and the reconfiguration
semantics. These customizations are discussed in the next chapter.



Chapter 6

Customizations to
distributed reconfigurations

Similar to local reconfigurations, NeCoMan incorporates a set of customizations
to its basic distributed reconfiguration algorithms. These customizations seek to
accomplish the same goal as the ones presented in Chapter 4. Hence, most of
the customizations listed in this chapter have a counterpart which is applicable to
NeCoMan’s local reconfiguration algorithms. The implementation of many of these
customizations as well as their pre-conditions, however, differs when applied to a
distributed instead of a local reconfiguration.

The structure of this chapter bears a close resemblance to Chapter 4. First,
Section 6.1 briefly lists all customizations and explains how they have been identi-
fied. Next, Sections 6.2 to 6.9 describe these customizations in full detail. Finally,
Section 6.10 concludes this chapter by elaborating on the four requirements that
NeCoMan must fulfill to achieve its objectives.

6.1 Overview

Every customization listed in this chapter originates from the (basic) distributed
reconfiguration algorithms presented in the previous chapter. To be precise, we de-
fined these customizations by re-ordering and discarding the reconfiguration actions
as well as the synchronization points that both algorithms include. From this set,
we selected the customizations that both yield a valid reconfiguration and reduce
communication disruption.

A first (resulting) customization involves omitting the synchronization that is
required to correctly activate a new distributed network service. This is discussed in
Section 6.2. Next, Section 6.3 explains how NeCoMan customizes its distributed re-
configuration algorithms when the order of the activation and the finishing phase can

141
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be switched. Section 6.4 then explains the effect of discarding all finishing actions.
After that, Section 6.5 discusses how NeCoMan customizes its (first) distributed
reconfiguration algorithm when quiescence can be detected by only monitoring the
old client processes (that is, instead of controlling all collaborating server processes
as well).

The following customizations are (mainly) based on omitting reconfiguration
actions that are redundant for a specific reconfiguration. Section 6.6, for instance,
explains how NeCoMan customizes its distributed reconfiguration algorithms when
the new service processes do not use active objects. Section 6.7 presents which
reconfiguration actions are omitted when the old and/or new service components
employ only client or server processes, instead of both. Next, Section 6.8 explains
how NeCoMan tailors its distributed reconfiguration algorithms when the old and/or
new service components expose only service-internal inports or outports, instead of
both. As a last customization, Section 6.9 elaborates on how NeCoMan’s distributed
reconfiguration algorithms are tailored when a reconfiguration involves service ad-
dition or removal instead of replacement.

All these customizations are presented in an analogous way (similar to Chap-
ter 4). We first elaborate on the pre-conditions that must be fulfilled to safely
apply a specific customization. Next, we explain the impact of this customization
by identifying all changes that it causes. These include the high-level conditions
that are affected and the reconfiguration actions that are added and/or removed.
After that, we discuss the effect of these changes on the reconfiguration conditions.
Furthermore, for customizations “activate before finishing” and “no finishing” (see
Sections 6.3 and 6.4), we also illustrate the resulting partial ordering of recon-
figuration actions as well as the resulting reconfiguration algorithm. In addition,
Appendix K evaluates the impact on reconfiguration overhead of the first three
customizations.

Finally, because the algorithm presented in Section 5.4.4 conducts a synchro-
nized distributed reconfiguration, we refer to this algorithm as NeCoMan’s syn-
chronized distributed reconfiguration algorithm. Likewise, the algorithm presented
in Section 5.5 will be called the independent distributed reconfiguration algorithm,
since this algorithm conducts on all affected nodes the independent execution of
NeCoMan’s local reconfiguration algorithm for distributed services.

6.2 No coordinated activation

A first customization involves omitting the distributed synchronization that is needed
to correctly activate new network service components. As explained in Section 5.4.4,
NeCoMan sends message B once LIint

old−new, LOint
new, LOext

new, and AP server
new are ex-

ecuted on the node that it manages – that is, to give notice that this node is
prepared to participate in new protocol-transactions. As we explain in the remain-
der of this section, for some particular reconfigurations this synchronization can
safely be omitted.
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Pre-conditions

Synchronization message B can only be omitted if

1. old and new services are compatible, or if

2. the network is able to deal with incorrect service compositions.

1) Old and new services are compatible. When this is the case, the old and
new client and server processes are able to accept and service each others requests.
Consequently, there is no need anymore to coordinate the distributed activation
of new service processes. When an old decompression process can service packets
transmitted by new compression processes, for instance, NeCoMan can safely bring
these new compression processes into use regardless of whether or not the new
decompression processes are activated.

2) Network handles incorrect service composition. Besides, message B can
also be omitted when the network is able to handle incorrect service compositions.
If this is the case, activating the new service components independently will not
compromise the correct functioning of the network. To illustrate this, consider
adding a compression service on two programmable nodes. When NeCoMan uses
its synchronized distributed reconfiguration algorithm, the new compression com-
ponent will only be activated if the new decompression component is prepared to
deal with compressed packets. This way, NeCoMan avoids that data packets arrive
at their destination in a compressed form. When compressed packets are dealt with
once they reach the edges of this network, however, synchronizing the activation of
the new compression component can safely be discarded.

Modifications

As a first and obvious effect, this customization involves omitting synchronization
message B. This implies that only the local activation of new service processes must
be coordinated. Hence, reconfiguration conditions (5.4) and (5.8) become replaced
with (3.4), (3.5), (3.8), and (3.9).

Besides, if the required pre-conditions are fulfilled, then bringing about quies-
cence becomes redundant as well. When new decompression processes are able to
service all compressed packets in transit (that is, regardless of whether they are
compressed by old or new compression processes), for instance, there is no need
to wait until all compressed packets in transit are dealt with before activating the
new compression and decompression processes. Hence, if a reconfiguration does
not require distributed coordination to correctly activate the new service processes,
then coordinating the distributed finishing of the old service processes can also be
omitted. Consequently, conditions (5.2) and (5.3) are replaced with (3.2) and (3.3),
and so message A becomes obsolete as well.
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To conclude, NeCoMan thus recomposes all affected nodes independently from
each others when coordinated activation is not required. Therefore, when apply-
ing this customization to its synchronized distributed reconfiguration algorithm,
NeCoMan uses its independent reconfiguration algorithm instead to conduct the
reconfiguration. Note that this does not imply that the affected nodes have to use
state transfer to reach a safe state. To be precise, NeCoMan uses this independent
reconfiguration algorithm when

• the distributed finishing phase does not have to be synchronized because the
affected nodes transfer execution state to reach a reconfiguration-safe state
(as explained in Section 5.5), or when

• the distributed activation phase of the new service components does not have
to be synchronized (as explained in this section).

6.3 Activate before finishing

A next customization involves activating the new service before the old one is fin-
ished. The benefit of this customization is similar for distributed as for local re-
configurations. That is, communication disruption can be reduced by finishing the
old service while the new one is already taken into use. In the remainder of this
section, we explain the effect of this customization on NeCoMan’s synchronized and
independent distributed reconfiguration algorithm.

6.3.1 Synchronized distributed reconfigurations

Pre-conditions

To safely switch the order of activation and finishing actions, a number of pre-
conditions must be fulfilled. These include that

1. the old service components do not share their execution state (if any) with
their client applications1,

2. the affected nodes do not transfer execution state, and

3. the network tolerates packet re-ordering.

1) No service-external state dependencies. When the components of a dis-
tributed network services share their execution state with their client applications,
the state of the old and new versions of that service must be kept consistent with
the state that these client applications expect. To illustrate this, consider the re-
placement of a TCP-like service (as the one depicted in Figure 5.2(b)) by a revised

1The term “client application” covers all service-external functionality that make use of the
affected network service.
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version after the former has successfully completed a session setup – that is, hav-
ing reached the ESTAB state. Activating the new TCP-like service before the old
version reaches the CLOSED (finished) state would compromises the correct func-
tioning of its client applications. These client applications still expect the service
to be in the ESTAB state, while the new version of this service, be default, be-
comes initialized in the CLOSED state. The old TCP-like service therefore must
be finished first before the new one can be activated safely.

When the old service components share their execution state (if any) with each
other only, these components are stateless with respect to the rest of the network.
Hence, the new version of such a service can be activated before the old one is
finished without breaking consistency. Monitoring Rold for quiescence, for instance,
can safely be carried out while new requests for reliable packet transmission are
directed towards Rnew.

2) No state transfer. In addition, NeCoMan does not apply this customization
when the underlying nodes employ state transfer to finish the old service compo-
nents. This is because if new service processes are operational, overwriting their
execution state with older (and most likely outdated) state information compro-
mises the service’s correct functioning. Besides, transferring state to a component
that is already taken into use is subject to critical section problems. The variables
that store this state may be in use (by the component’s processes) while being
reinstated with new information.

3) Packet re-ordering tolerated. Finally, when the old service becomes finished
while the new one is already brought into use, both services temporarily execute in
parallel during reconfiguration. Consequently, packets processed by both versions
most likely will be re-ordered. This customization, therefore, cannot be applied
when replacing a service which ensures that packets are delivered in the same order
they are sent, or when the network or its applications do not tolerate packets re-
ordering.

Modifications to reconfiguration phases

This customization involves more than simply swapping the order in which NeCo-
Man executes its finishing and activation actions. To illustrate this, we first explain
how NeCoMan implements the four reconfiguration phases when activating a new
service before finishing the old one. This will be illustrated (again) with the re-
placement of the reliability service.

a) Installation phase. When an old network service is finished while the new
one is already active, both versions will (temporarily) execute in parallel during
reconfiguration. While this occurs, packets in transit may be processed by the old
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or by the new service components. Support is needed, therefore, to distinguish
between these packets. This includes support to

• mark transmitted packets to identify the service components they were pro-
cessed by,

• de-multiplex these packets when they arrive at their destination, and

• delegate them to the appropriate service component.

Therefore, when switching the order of finishing and activation, NeCoMan ex-
tends the installation phase such that all affected nodes become instructed to inte-
grate dedicated “marking” and “dispatching” components into their stack compo-
sition (in addition to loading and connecting the new service components). These
marking components label all packets passing by, and thus have one inport and one
outport2. Dispatching components, in contrast, de-multiplex incoming packets and
delegate them to the appropriate (old or new) service component according to the
packet’s label. Hence, these components have one inport and two outports.

To be precise, NeCoMan instructs the affected nodes to only mark those packets
that the new service components have processed. Marking components, therefore,
only become connected to the service-internal outports of new service components,
as illustrated in Figure 6.1(b). When replacing the reliability service, for instance,
marking components (symbolized as MC ) are connected to the data-outport of
Rnew, and to the ack-outport of Anew. This way, the new data and acknowledge-
ment packets will be labelled when both new reliability components are brought
into use. Likewise, dispatching components (symbolized as DC ) delegate packets
without a label to the old components’ service-internal inports, while marked pack-
ets are delivered to the (service-internal inports of the) new reliability components.
As illustrated in Figure 6.1(b), these dispatching components thus replace the con-
nectors that mediate incoming data and acknowledgement packets to Aold and Rold,
respectively.

NeCoMan implements this customized installation phase by executing CCnew,
LOext

new, APDmark
new , and APD

disp
old−new, on every node where needed. With this

• APDmark
new symbolizes a reconfiguration action responsible for integrating mark-

ing components into the node’s protocol stack composition, and

• APD
disp
old−new denotes a reconfiguration action for integrating dispatching com-

ponents into the node’s protocol stack composition.

Figure 6.1 illustrates this customized installation phase. Furthermore, we ex-
press the implementation of this customized installation phase as

ISnew ≡ ∀nodex :[CCnew(nodex) f LOext
new(nodex)f

APDmark
new (nodex) f APD

disp
old−new(nodex)]

(P.5)

2Note that this labelling involves the use of header-bits that are reserved for marking packets
during reconfiguration (for example by using IP-options).
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(a) Installation of new reliability compo-
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(b) Adding marking and dispatching sup-
port

Figure 6.1: Activating new service before finishing old version: installing the new
reliability components and the associated packet-distinguishing support.

Note that in contrast to the original installation phase expressed in (P.1), this
customized installation phase does not involve the execution of LOint

new. This is be-
cause service-internal communication ports are already bound by installing mark-
ing and dispatching components, which makes the execution of LOint

new redundant.
Furthermore, new service components are not yet activated in this installation
phase. Attaching marking components to these components’ service-internal out-
ports, therefore, involves simply creating and connecting these marking components.
The integration of dispatching components, however, requires a dynamic recomposi-
tion. NeCoMan uses its local reconfiguration algorithm for isolated services tailored
with the “service addition” customizations to accomplish this.

Finally, because the new service components are not activated in this phase, the
distributed execution of CCnew, LOext

new, and APDmark
new must not be synchronized.

Furthermore, since dispatching components deliver original packets to the old ser-
vice components, the distributed execution of APD

disp
old−new does not have to be

synchronized either to preserve a correct service composition. The local execution
of these reconfiguration actions, in contrast, must be initialized in a specific order.
NeCoMan can only bind a component’s service-external outports when the associ-
ated component has been created. The same pre-condition holds for adding marking
and dispatching components. We express this local reconfiguration condition as

∀nodex : [LOext
new(nodex) ∧ APDmark

new (nodex) ∧ APD
disp
old−new(nodex)

← CCnew(nodex)]
(6.1)

b) Activation phase. When activating a new service before the old one is fin-
ished, the activation phase involves only the execution of LIext

old−new. This is be-
cause in contrast to the original activation phase expressed in (P.3), the execution
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(a) Activating the new reliability service
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(b) Removing dispatching support

Figure 6.2: Activating new service before finishing old version: activation of the
new reliability service and removal of dispatching support.

of LIint
old−new becomes redundant; the new components’ service-internal inports are

already bound by installing dispatching components. Besides, the execution of
RP client

new can be omitted as well since no packets are intercepted anymore during
reconfiguration. So, this customized activation phase involves only

• binding the service-external inports of the affected components such that pack-
ets are delivered exclusively to the new client processes, and

• starting the active objects that these new components employ.

Figure 6.2(a) illustrates (part of) the activation of the new reliability service.
Furthermore, we express the implementation of this customized activation phase
as

ASnew ≡ ∀nodex : [LIext
old−new(nodex) f AP client

new (nodex) f AP server
new (nodex)]

(P.6)

NeCoMan must coordinate the order in which these reconfiguration actions are
executed. To be precise, packets can only be (re)directed towards the service-
external inports of new client processes once the active objects of both these client
processes and their collaborating server processes have been initiated. Hence,
when activating the new service before finishing the old one, reconfiguration condi-
tion (5.4) becomes replaced with

∀nodex :[LIext
old−new(nodex) ← AP client

new (nodex)∧

∀nodey 6= nodex : AP server
new (nodey)]

(6.2)

c) Finishing phase. Finishing the old service after the new one is brought into
use makes the execution of IP client

old redundant. This is because finishing the old
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service does not involve intercepting packets anymore. Once the new reliability
components are brought into use, no more packets will be delivered to the service-
external inports of the old retransmission process. The old client processes, there-
fore, do not have to be prevented anymore from accepting new packets to bring
about a quiescent execution state. Hence, we express the implementation of this
customized finishing phase as

FSold ≡ ∀nodex : [ISSclient
old (nodex) f ISSserver

old (nodex)] (P.7)

Besides, note that by omitting the execution of IP client
old , reconfiguration condi-

tions (5.2) does not apply anymore.

d) Removal phase. Once every old component is finished, all packets in transit
belong to the new service components. From this moment on, packet-distinguishing
support thus becomes redundant and can safely be removed. So, when switching the
order of finishing and activation, NeCoMan extends the removal phase to include
the removal of marking and dispatching components as well (besides disconnecting
and deleting the old service components). The resulting removal phase includes

the execution of DCold, UOext
old , UOint

old , RPDmark
new , and RPD

disp
old−new on every node

where needed. With this

• RPDmark
new symbolizes a reconfiguration action responsible for removing the

marking components from the node’s protocol stack composition, and

• RPD
disp
old−new denotes a reconfiguration action for removing the employed dis-

patching components.

Note that the execution of RPDmark
new and RPD

disp
old−new requires dynamic recom-

position. NeCoMan uses its local reconfiguration algorithm for isolated services
tailored with the “service removal” and “activate before finishing” customization to
accomplish this.

We express the implementation of this customized removal phase as

RSold ≡ ∀nodex :[DCold(nodex) f UOext
old (nodex) f UOint

old(nodex)f

RPDmark
new (nodex) f RPD

disp
old−new(nodex)]

(P.8)

Furthermore, to illustrate this customized removal phase when replacing the relia-
bility service, Figure 6.2(b) sketches the composition of both nodes after executing

RPD
disp
old−new, while Figure 6.3(a) depicts the effect of executing RPDmark

new . To
complete this example, Figure 6.3(b) illustrates the execution of DCold, UOext

old , and
UOint

old as well.
To conduct safe reconfigurations, NeCoMan must synchronize the distributed

execution of RPDmark
new and RPD

disp
old−new. The marking support on node x can only

be removed safely when there is no more dispatching support left on every node y
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(b) Deleting old reliability components

Figure 6.3: Activating new service before finishing old version: removing marking
support and deleting old reliability components.

where node x sends packets to. We express this additional reconfiguration condition
as

∀nodex : [RPDmark
new (nodex) ← ∀nodey 6= nodex : RPD

disp
old−new(nodey)] (6.3)

This reconfiguration condition results from marking (during reconfiguration)
only packets that new service components transmit. Suppose this rule is ignored
and the marking component MC, which is attached to Rnew, becomes removed
before the dispatching components DC, which directs packets towards Aold or Anew,
has been taken out. When this occurs, DC will incorrectly deliver unmarked data
packets that are processed by Rnew towards Aold (which is quiescent). This breaks
the correct functioning of the reliability service.

Besides coordinating the distributed execution of these reconfiguration actions,
their local execution must be coordinated as well to correctly remove the old service
components. To be precise, NeCoMan can only delete an old component once
this component is disconnected – that is, after completing the execution of UOext

old ,

LIext
old−new, RPD

disp
old−new and UOint

old . Consequently, reconfiguration condition (5.5)
becomes replaced with

∀nodex : [DCold(nodex) ←

UOext
old (nodex) ∧ LIext

old−new(nodex) ∧ RPD
disp
old−new(nodex) ∧ UOint

old(nodex)]
(6.4)

Modifications to reconfiguration conditions

Furthermore, activating the new service before the old one is finished affects many
reconfiguration conditions, which in turn will modify the partial ordering of the
reconfiguration actions that are involved. First, condition (H.2) becomes replaced
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with (H.4)

FSold ← ASnew (H.4)

Besides, all reconfiguration conditions that NeCoMan must fulfill to correctly exe-
cute the original distributed reconfiguration algorithm become obsolete, except for
(5.3), (5.7), (5.13) and (5.14).

To identify the new (additional) reconfiguration conditions that NeCoMan must
fulfill when it applies this customization, we refine conditions (H.1), (H.4), and
(H.3) in terms of the reconfiguration actions that implement the customized ver-
sions of ISnew, ASnew, FSold, and RSold. This involves first substituting these
four high-level reconfiguration actions by expressions (P.5), (P.6), (P.7) and (P.8),
respectively. After reducing the resulting conditions, (H.1) produces condition (6.5)

∀nodex :[LIext
old−new(nodex) ← APDmark

new (nodex) ∧ APD
disp
old−new(nodex)∧

∀nodey 6= nodex : [LOext
new(nodey) ∧ APDmark

new (nodey)∧

APD
disp
old−new(nodey)]]

(6.5)

which defines that the service-external inports of the new (reliability) components
can only be bound once all new collaborating processes are prepared to process each
others invocations.

Condition (H.4), in turn, produces reconfiguration condition (6.6)

∀nodex : [ISSclient
old (nodex) ← LIext

old−new(nodex)] (6.6)

which impose to only monitor the old client processes for quiescence once these
processes are prevented from accepting and processing new service requests.

Finally, refining condition (H.3) produces reconfiguration condition (6.7)

∀nodex :[RPDmark
new (nodex) ∧ RPD

disp
old−new(nodex) ←

ISSclient
old (nodex) ∧ ISSserver

old (nodex)]
(6.7)

which dictates NeCoMan to only remove the employed marking and dispatching
components on node x once the old processes on that node are quiescent.

Result

To define the partial ordering of reconfiguration actions that NeCoMan must fulfill
when it applies this customization, Table 6.1 summarizes all associated reconfigu-
ration conditions. The resulting ordering when recomposing a node x as part of
a distributed reconfiguration is sketched in Figure 6.4. Furthermore, Figure 6.5
depicts the Petri net that models the (resulting) algorithm itself. Note that this
algorithm uses three synchronization messages: C, A, and E. Message C serves
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reconfiguration condition place

(5.3)
∀nodex : [ISSserver

old (nodex) ←
p9/p24∀nodey 6= nodex : ISSclient

old (nodey)]

(5.7)
∀nodex : [AP client

new (nodex) ∧ AP server
new (nodex)

p2/p17← CCnew(nodex)]

(5.13)
∀nodex : [UOint

old(nodex) ←
p9/p24ISSclient

old (nodex) ∧ ISSserver
old (nodex)]

(5.14) ∀nodex : [UOext
old (nodex) ← ISSserver

old (nodex)] p10/p25

(6.1)
∀nodex : [LOext

new(nodex) ∧ APDmark
new (nodex)∧

p2/p17
APD

disp
old−new(nodex) ← CCnew(nodex)]

(6.2)
∀nodex : [LIext

old−new(nodex) ← AP client
new (nodex)∧

p7/p22∀nodey 6= nodex : AP server
new (nodey)]

(6.3)
∀nodex : [RPDmark

new (nodex) ←
p11/p26

∀nodey 6= nodex : RPD
disp
old−new(nodey)]

(6.4)
∀nodex : [DCold(nodex) ← UOext

old (nodex)∧
p14/p29LIext

old−new(nodex) ∧ RPD
disp
old−new(nodex)∧

UOint
old(nodex)]

(6.5)

∀nodex : [LIext
old−new(nodex) ←

p7/p22
APDmark

new (nodex) ∧ APD
disp
old−new(nodex)∧

∀nodey 6= nodex : [LOext
new(nodey)∧

APDmark
new (nodey) ∧ APD

disp
old−new(nodey)]]

(6.6) ∀nodex : [ISSclient
old (nodex) ← LIext

old−new(nodex)] p8/p23

(6.7)
∀nodex : [RPDmark

new (nodex) ∧ RPD
disp
old−new(nodex) ←

p10/p25
ISSclient

old (nodex) ∧ ISSserver
old (nodex)]

Table 6.1: Customization of NeCoMan’s algorithm for conducting synchronized
distributed reconfigurations: overview of all reconfiguration conditions that must
be fulfilled when activating the new service before the old reaches quiescence. The
right column lists the places as form which the associated pre-condition is fulfilled.

to satisfy reconfiguration conditions (6.2) and (6.5). Message A, in turn, is re-
quired to meet reconfiguration condition (5.3), while message E is needed to fulfill
condition (6.3).

Finally, the right column of Table 6.1 specifies for each reconfiguration condition
the place (of this Petri net model) as from which the associated pre-condition is
fulfilled. This enables to verify that the algorithm modelled in Figure 6.5 meets all
required reconfiguration conditions.
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Figure 6.4: Customization of NeCoMan’s algorithm for conducting synchronized
distributed reconfigurations: overview of the partial ordering of reconfiguration
actions that the reconfiguration conditions listed in Table 6.1 define.

6.3.2 Independent distributed reconfigurations

Activating new service components before the old ones are finished can be applied
as well when NeCoMan recomposes all affected nodes independently. The pre-
conditions to safely switch the order of activation and finishing actions are in this
case identical as for local reconfigurations of distributed services. For the same
reason the effect of this customization differs in nothing from the effect explained
in Section 4.2.1.

Note, however, that NeCoMan only applies this customization to its independent
reconfiguration algorithm if the latter results from customization “no distributed
activation”. When NeCoMan uses its independent distributed reconfiguration algo-
rithm because the underlying nodes employ state transfer to finish the old service,
in contrast, then the new service components cannot be activated before finishing
the old one. Similar as for synchronized distributed reconfigurations, this would
compromise the service’s correct functioning.
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Figure 6.5: Customization of NeCoMan’s algorithm for conducting synchronized
distributed reconfigurations: Petri net representation of the resulting algorithm
when activating the new components before finishing the old ones.

6.4 No finishing

A next customization involves omitting all finishing actions. When the new network
service or the network itself can deal with inconsistencies that may occur during



6.4 No finishing 155

reconfiguration, there is no need for the reconfiguration middleware to preserve
consistency. In that case, NeCoMan can safely omit its finishing actions, thus
reducing the overhead that a reconfiguration causes.

6.4.1 Synchronized distributed reconfigurations

Pre-conditions

The pre-conditions that must be fulfilled to safely apply this customization when
conducting synchronized distributed reconfigurations are similar as when NeCoMan
executes local reconfigurations of distributed services. First, the affected service
components must operate in a best-effort network, such that packet loss caused by
omitting all finishing actions will not compromise the correct functioning of the
network. Second, the network or the new network service must be able to deal
with all ongoing protocol-transactions. This is because when finishing actions are
discarded, there is no knowledge about the status of these unfinished protocol-
transactions at the moment when new service components are brought into use.

To illustrate this, consider the addition of a compression service on two nodes.
When no finishing is involved, there may possibly be packets in transit that are not
compressed when the new decompression process becomes activated. This causes
no problem, however, when the new decompression process is able to service those
uncompressed packets as well. As an additional example, consider again the removal
of a compression service. When the compression service is not finished, there may
still be compressed packets in transit when removing the affected decompression
process. This can be solved by filtering out all compressed packets that reach the
edge of the programmable network.

Finally, NeCoMan can only omit its finishing actions when this causes no incon-
sistent execution states or when the network tolerates or restores from inconsistent
execution states. This is fulfilled, among others, when the affected service compo-
nents do not share their execution state (that is, not with each other and not with
other network service components).

Modifications

Discarding all finishing actions brings along the following changes. First, condi-
tions (H.2) and (H.3) become redundant and are therefore omitted. Instead, we
replaces these (high-level) conditions with (H.5)

RSold ← ASnew (H.5)

which dictates to only remove the old network service components once the new
ones are active. Similar to local reconfigurations, this condition is not required
to execute a correct reconfiguration, but is essential to minimize communication
disruption. Second, omitting all finishing actions includes discarding the execution
of IP client

old , ISSclient
old , and ISSserver

old . Finally, since packets are not intercepted
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anymore, the execution of RP client
old becomes redundant as well. NeCoMan therefore

customizes the implementation of its activation phase. We express this resulting
implementation as

ASnew ≡ ∀nodex :[LIint
old−new(nodex) f LIext

old−new(nodex)f

AP client
new (nodex) f AP server

new (nodex)]
(P.9)

Result

All these changes affect reconfiguration conditions (5.2), (5.3), (5.4), (5.8), (5.9),
(5.10), (5.11), (5.12), (5.13), and (5.14). To be precise, these conditions become
replaced with (6.8), (6.9), (6.10), and (6.11). Let us briefly explain these reconfig-
uration conditions.

Reconfiguration conditions (6.8) and (6.9). Since packets are not intercepted
anymore during reconfiguration when all finishing actions are omitted, a compo-
nent’s service-internal inports can only be bound once this component is able to
process invocations (which belong to ongoing protocol-transactions). This implies
that its outports must be bound, and its active objects (if any) must be started.
We express this reconfiguration condition as follows

∀nodex : [LIint
old−new(nodex) ←

LOext
new(nodex) ∧ LOint

new(nodex) ∧ AP client
new (nodex) ∧ AP server

new (nodex)]
(6.8)

Furthermore, a new component’s service-external inports can only be bound
once the execution of new protocol-transactions is enabled. This can be expressed
as

∀nodex : [LIext
old−new(nodex) ← LOint

new(nodex) ∧ AP client
new (nodex)∧

LIint
old−new(nodex) ∧ ∀nodey 6= nodex : LIint

old−new(nodey)]
(6.9)

Reconfiguration conditions (6.10) and (6.11). Reconfiguration conditions
(6.10) and (6.11), in turn, result from refining condition (H.5) in terms of the re-
configuration actions to implement ASnew and RSold. This involves substituting
ASnew and RSold by expressions (P.9) and (P.4), respectively. Reducing the result-
ing condition then results in

∀nodex : [UOext
old (nodex) ← LIint

old−new(nodex)] (6.10)

∀nodex : [UOint
old(nodex) ← LIext

old−new(nodex) ∧ LIint
old−new(nodex)] (6.11)
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Figure 6.6: Customization of NeCoMan’s algorithm for conducting synchronized
distributed reconfigurations: overview of the partial ordering of reconfiguration
actions that the reconfiguration conditions listed in Table 6.2 define.

Reconfiguration condition (6.10) imposes to only unlink a component’s service-
external outports when its service-internal inports are disconnected. This is because
only server processes expose service-external outports. Besides, these server pro-
cesses can only be invoked via the component’s service-internal inports (see Fig-
ure 2.16). Reconfiguration condition (6.11), in contrast, instructs to only unlink
a component’s service-internal outports once both its service-external and service-
internal inports have been disconnected. This is because service-internal outports
may belong to client as well as to server processes (as illustrated in Figure 2.16). Be-
sides, these client and server processes can be invoked via the component’s service-
external and service-internal inports.

Partial ordering and resulting algorithm. To conclude, Table 6.2 summa-
rizes all reconfiguration conditions that NeCoMan must fulfill to correctly execute
a coordinated distributed reconfiguration that involves no finishing. The resulting
ordering of reconfiguration actions when recomposing a node x as part of a dis-
tributed reconfiguration is sketched in Figure 6.6. In addition, Figure 6.7 depicts
the Petri net that models NeCoMan’s coordinated distributed reconfiguration al-
gorithm after applying this customization. Note that the resulting algorithm uses
only one synchronization message. This message F serves to satisfy reconfiguration
condition (6.9).

6.4.2 Independent distributed reconfigurations

The pre-conditions to omit finishing actions when conducting independent dis-
tributed reconfigurations differ in nothing from those listed in Section 6.4.1. Besides,
the effect of this customization on independent distributed reconfigurations is iden-
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reconfiguration condition place

(5.1) ∀nodex : [LOext
new(nodex) ∧ LOint

new(nodex) ← CCnew(nodex)] p2/p13

(5.5)
∀nodex : [DCold(nodex) ← UOext

old (nodex) ∧ UOint
old(nodex)∧

p10/p21LIext
old−new(nodex) ∧ LIint

old−new(nodex)]

(5.6)
∀nodex : [LIint

old−new(nodex) ∧ LIext
old−new(nodex) ←

p2/p13CCnew(nodex)]

(5.7)
∀nodex : [AP client

new (nodex) ∧ AP server
new (nodex) ←

p2/p13CCnew(nodex)]

(6.8)
∀nodex : [LIint

old−new(nodex) ← LOext
new(nodex)∧

p6/p17
LOint

new(nodex)∧AP client
new (nodex)∧AP server

new (nodex)]

(6.9)
∀nodex : [LIext

old−new(nodex) ← LOint
new(nodex)∧

p7/p18AP client
new (nodex) ∧ LIint

old−new(nodex)∧
∀nodey 6= nodex : LIint

old−new(nodey)]

(6.10) ∀nodex : [UOext
old (nodex) ← LIint

old−new(nodex)] p7/p18

(6.11)
∀nodex : [UOint

old(nodex) ←
p8/p19LIext

old−new(nodex) ∧ LIint
old−new(nodex)]

Table 6.2: Customization of NeCoMan’s algorithm for conducting synchronized
distributed reconfigurations: overview of all reconfiguration conditions that have to
be fulfilled when finishing actions are discarded.

tical to when local reconfigurations of distributed services are involved. The latter
has been presented in Section 4.3.1.

6.5 No finishing of server processes

As stated before, driving a distributed service to a quiescent execution state in-
volves monitoring the affected client and server processes until all ongoing protocol-
transactions have completed. For some services, however, reaching quiescence does
not require to monitor the affected server processes, which makes the execution of
ISSserver

old redundant. To illustrate this, consider (again) the replacement of a relia-
bility service. Driving this service to a quiescent execution state requires to monitor
only Rold (instead of Aold as well). Once Rold’s retransmission queue is empty, all
transmitted data packets have arrived correctly, which indicates that both Rold and
Aold are in a quiescent execution state. Consequently, NeCoMan can in this case
safely omit the execution of ISSserver

old .
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Figure 6.7: Customization of NeCoMan’s algorithm for conducting synchronized
distributed reconfigurations: Petri net representation of the resulting algorithm
when all finishing actions are omitted.

Pre-conditions

A first pre-condition to apply this customization relates to the communication pro-
tocol that the old processes employ. NeCoMan can only safely omit the execution of
ISSserver

old when these processes communicate by a protocol that terminates locally.
If so, the last message of each protocol-transaction arrives to the client process
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(a) Local protocol termination
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(b) Remote protocol termination

Figure 6.8: Communication characteristics: local versus remote protocol termina-
tion

that has initiated this protocol-transaction (see Figure 6.8(a)). Hence, verifying if
all ongoing protocol-transactions have completed (and thus quiescence is reached)
involves monitoring (only) the affected client processes. When the old service em-
ploys a protocol that terminates remotely (as illustrated in Figure 6.8(b)), however,
checking if all ongoing protocol-transactions have completed requires to monitor the
affected server processes. So, in this case ISSserver

old cannot be omitted.

An extra pre-condition to apply this customization includes that the old server
processes do not encapsulate state which goes beyond the execution of ongoing
protocol-transactions. Otherwise this state must be transferred from the old towards
the new server processes to preserve consistency. This makes the execution of
ISSserver

old necessary.

Furthermore, since this customization affects how to reach quiescence, it only
applies to NeCoMan’s synchronized distributed reconfiguration algorithm. Note
also that this customization (obviously) cannot be combined with the previous cus-
tomization which involves omitting all finishing actions. Finally, this customization
cannot be applied either in case of service addition, as we further discuss later on3.

Modifications

As stated before, NeCoMan omits the execution of ISSserver
old when applying this

customization. Furthermore, recall that this customization assumes that the old
server processes located on node x are quiescent once ISSclient

old is completed on
every node y 6= x. Hence, for each reconfiguration condition that imposes to wait
until ISSserver

old has completed on node x, ISSserver
old (nodex) becomes replaced with

ISSclient
old (nodey), ∀nodey 6= nodex. To illustrate the impact of this, Table J.1 lists

all affected reconfiguration conditions as well as the resulting ones. Besides, Fig-
ure G.2 models the algorithm that NeCoMan uses to replace the reliability service,
which does not include the use of ISSserver

old .

3in Section 6.9, to be precise.



6.6 No active objects 161

6.6 No active objects

The following customization involves the absence of active objects. Similar to lo-
cal reconfigurations, NeCoMan can safely omit the execution of AP client

new and/or
AP server

new when the new client and/or server processes do not employ active objects.

Pre-conditions

No additional pre-condition must be fulfilled to apply this customization – that is,
besides the (obvious) requirement that the new component’s client and/or server
processes do not employ active objects. Note that this pre-condition is always
fulfilled when a reconfiguration involves the removal of a distributed network service.

Modifications

When applying this customization, NeCoMan thus omits the execution of AP client
new

and/or AP server
new . To illustrate the effect of this customization on NeCoMan’s syn-

chronized distributed reconfigurations, Table J.2 lists all reconfiguration conditions
that are affected when client processes do not use active objects. For each of these
conditions, the resulting reconfiguration conditions (if any) are presented in the
right column of this table. Similarly, Table J.3 lists all reconfiguration conditions
that are affected when new server processes do not employ active objects. Finally,
Tables D.1 and D.2 illustrate the effect of omitting AP client

new and/or AP server
new when

NeCoMan conducts independent distributed reconfigurations.

6.7 Only client or server processes instead of both

The next customization involves omitting the reconfiguration actions that become
redundant when the affected service components encapsulate only client or server
processes instead of both.

6.7.1 Synchronized distributed reconfigurations

Pre-conditions

No additional pre-condition must be fulfilled to apply this customization – that is,
besides the requirement that the old and new service components encapsulate only
client or server processes instead of both. Note that the old as well as the new
component must fulfill this requirement, as otherwise structural integrity cannot be
preserved. To illustrate this, consider the replacement of a bidirectional compres-
sion service (as illustrated in Figure 6.9(a)) by a unidirectional version (depicted in
Figure 6.9(b)). In this case, the old service components encapsulate both a client
and a server process, while the new ones contain only a client or a server process
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(b) New unidirectional compression service
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(c) New unidirectional compression service dealing with both
up and downstream packet flows

Figure 6.9: Replacing a compression service with a new one.

instead of both. To preserve structural integrity, however, the new service compo-
nents must provide (at least) every service-external communication port that the
old service components offer. Replacing the service depicted in Figure 6.9(a) by the
one modelled in Figure 6.9(b), therefore, cannot be accomplished as is. Instead, the
components of the new unidirectional compression service must encapsulate dummy
client and server processes to deal with upstream packets as well. This is illustrated
in Figure 6.9(c).

Modifications

Depending on whether NeCoMan manages a node that accommodates only client
or server processes, it omits different reconfiguration actions. When only client
processes are involved when recomposing node x, the execution of ISSserver

old and
AP server

new become redundant for that node and therefore can safely be discarded.
Besides, since only server processes expose service-external outports, NeCoMan also
omits the execution of LOext

new and UOext
old . This is illustrated in Figure G.2, which

models NeCoMan’s algorithm for replacing the reliability service. To further illus-
trate the impact of this customization, Table J.4 lists all reconfiguration conditions
that are affected when the node that NeCoMan manages accommodates only client
processes.

When the node that NeCoMan manages hosts only server processes, then NeCo-
Man omits the execution of IP client

old , ISSclient
old , AP client

new , and RP client
new . Besides,

since only client processes expose service-external inports, NeCoMan also omits
the execution of LIext

old−new on that node. Table J.5 presents all reconfiguration
conditions that become changed when applying this customization.

Note that this customization also affects how many synchronization messages
must be exchanged during reconfiguration. For example, consider a node x with
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only client processes and a node y with only server processes. Instead of sending two
instances of message A (one from x to y, and another one in the opposite direction),
NeCoMan sends this message only from node x towards node y in this case. This is
because reconfiguration condition (5.3) does not apply anymore to node x. Likewise,
in this case NeCoMan sends message B only from node y towards node x. Since
node y accommodates only server processes, reconfiguration conditions (5.4) and
(5.8) as well as the associated synchronization can be discarded on that node. To
illustrate all this, we refer to Figure G.2, which models NeCoMan’s algorithm for
replacing the reliability service.

Similarly, combining this customization with the “activate before finishing” cus-
tomization affects how many instances of synchronization message C that NeCoMan
must exchange4. Consider again a node x and y with only client and server pro-
cesses, respectively. In that case, NeCoMan must only send message C from node y
towards node x. This is because reconfiguration conditions (6.2) and (6.5) do not
apply anymore to node y, which makes the need to send message C from node x
to y redundant. To illustrate all this, we refer to Figure H.2. This model depicts
NeCoMan’s algorithm for replacing the reliability service, which involves activating
the new service before finishing the old one.

Finally, combining this customization with customization “no finishing” affects
how many instances of synchronization message F must be sent. This is because
reconfiguration condition (6.9) only relates to the nodes hosting client processes. So,
when the affected components encapsulate only client or server processes, NeCoMan
sends message F only from the nodes hosting the server processes towards those
accommodating the client processes.

6.7.2 Independent distributed reconfigurations

The effect of this customization on independent distributed reconfigurations is iden-
tical to when local reconfigurations of distributed services are involved. The latter
has been presented in Section 4.5.

6.8 Only service-internal inports or outports in-
stead of both

The following customization is targeted at omitting reconfiguration actions that
involve service-internal inports and outports. This customization, therefore, affects
the execution of LOint

new, UOint
old , LIint

old−new, APDmark
new , APD

disp
old−new, RPDmark

new ,

and RPD
disp
old−new.

4Messages C is depicted in Figure 6.5
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6.8.1 Synchronized distributed reconfigurations

Pre-conditions

These reconfiguration actions can only be omitted if the old and new service
components encapsulate only client or server processes instead of both. In addition,
the old and/or new service components must communicate by a unidirectional
communication protocol. If both conditions are fulfilled, then (some of) the affected
components employ only service-internal inports or outports (instead of both). To
illustrate this, we refer to Figure 6.9(b).

Note that this customization does not require for both the old as well as the new
service components to communicate by a unidirectional communication protocol –
that is, unlike when applying this customization to local reconfigurations. This is
because a bidirectional service can safely be replaced with a unidirectional service
(and vice versa) without compromising the network’s structural integrity.

Finally, note that when the old service communicates by a unidirectional com-
munication protocol, the execution of ISSserver

old cannot be omitted5. This is because
a unidirectional communication protocol always ends at a remote node, while omit-
ting ISSserver

old requires for the old service processes to communicate by a protocol
that terminates locally.

Modifications

Because this customization is targeted at nodes with only client or server processes,
its modifications include omitting the execution of

• ISSserver
old , AP server

new , LOext
new and UOext

old on the nodes accommodating only
client processes, and

• IP client
old , ISSclient

old , AP client
new , RP client

new and LIext
old−new on the nodes where only

server processes are involved

as well as discarding the associated use of synchronization messages.
Furthermore, different reconfiguration actions are affected depending on whether

the old, the new, or both the old and new service processes communicate by a
unidirectional communication protocol. We therefore distinguish between

1. replacing a unidirectional with a unidirectional service (see Figure 6.10),

2. replacing a bidirectional with a unidirectional service (see Figure 6.11), and

3. replacing a unidirectional with a bidirectional service (see Figure 6.12).

For each of these reconfigurations, NeCoMan applies a slightly different cus-
tomization to its algorithm for conducting synchronized distributed reconfiguration.

5This customization has been discussed in Section 6.5.
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Figure 6.10: Replacing a
unidirectional with a uni-
directional service
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Figure 6.11: Replacing a
bidirectional with a uni-
directional service
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Figure 6.12: Replacing
a unidirectional with a
bidirectional service

1) Replacing a unidirectional by a unidirectional service. On a node x
with only client processes, NeCoMan in this case omits the execution of LIint

old−new,

APD
disp
old−new, and RPD

disp
old−new. These omissions are allowed as none of the new

client processes expose service-internal inports (as illustrated in Figure 6.10). To
illustrate the impact of this customization, Table J.6 lists all changed reconfiguration
conditions.

Likewise, on a node y that accommodates only server processes, NeCoMan dis-
cards the execution of LOint

new, UOint
old , APDmark

new , and RPDmark
new . These omissions

are allowed as none of the new server processes expose service-internal outports (see
Figure 6.10). Table J.7 lists all reconfiguration conditions that are changed when
applying this customization.

Besides, note that this customization also affects the number of synchronization
message E that NeCoMan must exchange6 – that is, given that the new service
becomes activated before finishing the old one. To illustrate this, consider the
replacement depicted in Figure 6.10. In this case, marking components are only
needed on node x, while dispatching components are only required on node y. Hence,
NeCoMan must only transmit synchronization message E from node y towards
node x, so as to notify node x that RPD

disp
old−new has completed on node y. When

a replacement includes bidirectional services, however, NeCoMan must send this
message in the opposite direction as well.

2) Replacing a bidirectional by a unidirectional service. In this case, the
new client processes do not expose service-internal inports. Likewise, the new server
processes do not provide service-internal outports (see Figure 6.11). Hence, on a
node with only client processes, NeCoMan (1) replaces LIint

old−new with UIint
old , (2)

omits the execution of APD
disp
old−new, and (3) replaces RPD

disp
old−new with UIint

old .

6Message E is depicted in Figure 6.5
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To illustrate the impact of this customization, Table J.8 lists all reconfiguration
conditions that this customization changes (as backing).

Let us explain this customization in short. Since the new client processes do not
expose service-internal inports, LIint

old−new cannot be executed as is. This is because
LIint

old−new involves both unbinding the old and binding the new component’s service-
internal inports. This reconfiguration action, therefore, must be reduced to UIint

old

– which is responsible (only) for unbinding the old component’s service-internal
inports7.

Besides, when the new (unidirectional) service becomes activated before finishing
the old (bidirectional) one, only packets that are sent from component C to D
must be labelled (both components are depicted in Figure 6.11). Hence, NeCoMan

can safely omit the execution of APD
disp
old−new and RPD

disp
old−new when recomposing

node x. To be precise, RPD
disp
old−new becomes replaced with UIint

old to make sure that
the service-internal inports of the old client processes are unlinked.

Furthermore, on a node y with only server processes, NeCoMan discards the
execution of LOint

new because the new server processes expose no service-internal out-
ports. Besides, when the new service becomes activated before finishing the old one,
marking components are not needed on node y for the same reason. Hence, NeCo-
Man omits the execution of APDmark

new and RPDmark
new when recomposing node y.

To illustrate the impact of this customization, we refer to Table J.9.
Finally, note that synchronization message E (again) must only be sent from

the nodes that host server processes towards the other ones (hosting the client
processes). The reason for this is similar as when replacing a unidirectional service
with a new unidirectional version. That is, marked packets are only transmitted in
one direction (from the client towards the server processes), such that NeCoMan
must only transmit message E in the opposite direction to fulfill reconfiguration
condition (6.3).

3) Replacing a unidirectional by a bidirectional service. In this case, the
old client processes do not expose service-internal inports and the old server pro-
cesses do not expose service-internal outports. Hence, on a node x with only client
processes, LIint

old−new cannot be executed as is. This is because LIint
old−new involves

unlinking the old component’s service-internal inports as well as connecting the
service-internal inports of the new component. Since the client processes on node x
do not expose service-internal inports, NeCoMan replaces LIint

old−new by LIint
new. The

latter is responsible (only) for binding the new component’s service-internal inports.
The effect of this customization is illustrated in Table J.10.

Besides, when activating the new (bidirectional) service before the old (uni-
directional) one is finished, there is no need to employ marking and dispatching
components on every affected node. To illustrate this, consider the reconfigura-

7Note that LIint
old−new

encapsulates both UIint
old

and LIint
new. To be precise, UIint

old
is responsible

for unbinding the old component’s service-internal inports, while LIint
new represents binding the

service-internal inports of a new component.
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tion depicted in Figure 6.12. During this reconfiguration, only downstream packets
(sent from component A to B, and from C to D) will get multiplexed. The pack-
ets that D returns to C, however, will not get mixed with other packets in transit
(because there are none). So, when replacing a unidirectional with a bidirectional
service, NeCoMan must only employ marking and dispatching support along the
communication path that both services have in common. This implies that marking
components are only needed on the nodes with client processes. Likewise, dispatch-
ing components must only be added to and removed from nodes accommodating
server processes.

Therefore, when NeCoMan manages a node x that accommodates only client
processes which are activated before finishing the old ones, it omits the execution of
APD

disp
old−new and RPD

disp
old−new. To be precise, APD

disp
old−new becomes replaced with

LIint
new, so as to bind the service-internal inports of the new component. Table J.10

lists all reconfiguration conditions that are affected by this customization.

On a node y with only server processes, NeCoMan omits the execution of UOint
old

when replacing a unidirectional with a bidirectional service. This omission is al-
lowed as the (old) server processes of a unidirectional service do not expose service-
internal outports. Besides, when activating a new bidirectional service before fin-
ishing the old unidirectional one, NeCoMan omits the execution of APDmark

new and
RPDmark

new on node y. Instead, APDmark
new becomes replaced with LOint

new to bind the
service-internal outports of the new server processes. To illustrate the effect of this
customization, Table J.11 lists all affected reconfiguration conditions.

Finally, also in this case synchronization message E must only be sent from the
nodes with server processes towards those accommodating client processes.

6.8.2 Independent distributed reconfigurations

Pre-conditions

NeCoMan only conducts isolated distributed reconfigurations to replace a bidirec-
tional service with a unidirectional one (and vice versa) if structural inconsistencies
do not compromise the correct network functioning. To illustrate this, consider the
independent recomposition of both nodes depicted in Figure 6.11. When compo-
nent A becomes replaced with C while B is still in use, none of the messages that
B sends out will arrive correctly. NeCoMan therefore only recomposes both these
nodes independently when the affected services or the network can deal with such
inconsistencies – that is, if customization “no finishing” is applicable as well.

Note that this pre-condition is not required when replacing a unidirectional
service with another unidirectional one. In that case, the affected nodes can be re-
composed independently if the old and new service components are inter-compatible
or if the network can handle inconsistencies.
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Modifications

1) Replacing a unidirectional by a unidirectional service. The effect of
this customization on independent distributed reconfigurations is identical to when
local reconfigurations of distributed services are involved. The latter has already
been discussed in Section 4.6.

2) Replacing a bidirectional by a unidirectional service. On a node with
only client processes, NeCoMan replaces action LIint

old−new with UIint
old to conduct

this reconfiguration. Table J.12 lists all reconfiguration conditions that have to be
fulfilled to correctly conduct this reconfiguration. Likewise, on a node with only
server processes, NeCoMan omits the execution of LOint

new. To illustrate the effect
of this customization, Table J.13 lists all reconfiguration conditions that have to be
fulfilled in this case.

3) Replacing a unidirectional with a bidirectional service. On a node with
only client processes, NeCoMan replaces LIint

old−new with LIint
new. For an overview

of all reconfiguration conditions that have to be fulfilled to carry out this recom-
position, we refer to Table J.14. Besides, on a node with only server processes,
NeCoMan omits the execution of UOint

old . Table J.15 illustrates the effect of this
customization.

6.9 Service addition or removal

The last customizations involve the reconfiguration type – that is, service addition,
removal, or replacement. To be precise, NeCoMan applies a different customization
in case of service addition and removal, respectively.

6.9.1 Synchronized distributed reconfigurations

Pre-conditions

No additional pre-conditions must be satisfied for NeCoMan to safely apply both
customizations. Note, however, that customization “no finishing of server processes”
cannot be applied in case of service addition. This is because ISSserver

old can only
be discarded when the old service uses a communication protocol that terminates
locally. Adding a new service, however, is similar to replacing a dummy service
with this new version. As illustrated in Figure 6.13, such a dummy service contains
a (dummy) client process that transmits (unprocessed) packets towards a (dummy)
server processes. Hence, the protocol that this dummy service uses to communicate
terminates on a remote node. ISSserver

old therefore cannot be discarded in case of
service addition.
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Figure 6.13: No reliability service de-
ployed
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Figure 6.14: Nodes equipped with relia-
bility service

Modifications

We illustrate both customizations with the addition and removal of a reliability
service (in contrast to its replacement). With this in view, Figure 6.13 sketches the
protocol stacks of two nodes when no reliability support is deployed. In addition,
Figure 6.14 sketches both nodes equipped with a reliability service.

a) Service addition. When NeCoMan conducts a synchronized distributed re-
configuration to add a new service, it omits the execution of UOext

old , UOint
old and

DCold. This is because no old service components must be removed.
Besides, NeCoMan also slightly customizes its finishing phase. To illustrate

this, recall that adding a new network service is similar to replacing a dummy
service with this new version. In this case quiescence comes about on the arrival
of all “unprocessed” packets which are still in transit. Hence, reaching quiescence
involves intercepting or redirecting packets on the nodes hosting the dummy client
processes, as well as monitoring the affected dummy server processes. The execution
of ISSclient

old , however, becomes redundant in this case.
To illustrate the effect of this customization, Table J.16 lists all reconfiguration

conditions that are changed in case of service addition. Furthermore, we demon-
strate in Appendix H in more detail how NeCoMan dynamically adds a reliability
service on two programmable nodes. To be precise, Figures H.3 and H.5 sketch
this reconfiguration when quiescence is reached before and after activating the new
service, respectively. Besides, Figures H.4 and H.6 model the algorithms that NeCo-
Man uses to carry out both reconfiguration scenarios.

b) Service removal. When NeCoMan executes a service removal, it omits the
execution of CCnew, LOext

new, LOint
new, AP client

new , and AP server
new as there are no new

components involved.
Besides, when customization “activate before finish” is applicable as well, NeCo-

Man performs two additional changes on its current reconfiguration algorithm.
First, APDmark

new cannot be used as is in this case. Because service removal in-
volves no new service components, NeCoMan cannot attach (the inports of) marking
components to the outports of these missing service components. Hence, NeCoMan
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Figure 6.15: Adding marking and dis-
patching support when removing the old
reliability service
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Figure 6.16: Activating new (dummy
service) by redirecting packets towards
the new marking component

instructs the affected nodes to (only) bind the outports of the marking compo-
nents. This is illustrated in Figure 6.15. We denote this (slightly) different variant
of APDmark

new as APD
′mark
new .

Furthermore, NeCoMan also replaces LIext
old−new by LI

′ext
old−new in this case.

LI
′ext
old−new redirects packets from the old component’s service-external inports to-

wards the inports of the marking component – that is, instead of redirecting them to-
wards the service-external inports of the new missing service component as LIext

old−new

would do. Figure 6.16 illustrates the effect of LI
′ext
old−new when removing the relia-

bility service.
To illustrate the effect of this customization, Table J.17 lists all reconfiguration

conditions that are changed in case of service removal. Furthermore, we refer (again)
to Appendix H for a more detailed overview of how NeCoMan dynamically removes
the reliability service from two programmable nodes8.

6.9.2 Independent distributed reconfigurations

Pre-conditions

NeCoMan only uses its isolated distributed reconfiguration algorithm to add or re-
move a service if this algorithm results from applying customization “no distributed
activation”9. This implies that the network or the new network service must be able
to handle structural inconsistencies. To dynamically add a compression and decom-
pression component on two programmable nodes independently from each other, for
instance, the new decompression component must be able to process compressed
as well as uncompressed packets. Besides, when removing both components after-
wards (again independently from each others), the network must be able to deal

8To be precise, see Figures H.7 to H.10
9When NeCoMan uses its independent distributed reconfiguration algorithm because the under-

lying nodes employ state transfer to finish the old service, in contrast, then only service replacement
can be supported.
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with packets reaching their destination in a compressed form.

Modifications

In case of service addition, NeCoMan omits the execution of DCold, UOint
old and

UOext
old because no old service components must be removed. Besides, the execution

of ISSclient
old and ISSserver

old will be discarded as well as the old (dummy) service
does not have to be finished. Table J.18 lists all reconfiguration conditions that are
affected by this customization.

When carrying out a service removal, NeCoMan omits the execution of CCnew,
LOext

new, LOint
new, AP client

new , and AP server
new . This is because the new (dummy) service

does not contain new components. To illustrate the effect of this customization,
Table J.19 lists all reconfiguration conditions that this customization changes.

6.10 Conclusion

We conclude this chapter by revisiting the four requirements that NeCoMan must
satisfy to achieve its objectives.

6.10.1 Correct reconfigurations

Similar as for the customizations to NeCoMan’s local reconfiguration algorithms,
none of the customizations presented in this chapter compromise the reconfiguration
correctness – that is, given that all associated pre-conditions are fulfilled. This is
because the resulting algorithms meet all (adapted) reconfiguration conditions.

6.10.2 Limited reconfiguration overhead

All customizations presented in this chapter seek to optimize distributed reconfigu-
rations. To illustrate this, Appendix K evaluates the effect on reconfiguration over-
head for the first three customizations. All other customizations involve omitting
redundant reconfiguration actions, and thus optimize the reconfiguration scenario
as well.

Note, however, that the current version of NeCoMan cannot always select the
most optimal algorithm for each distributed reconfiguration. For instance, when re-
placing a stateful service that takes a long time to finish, activating the new service
before the old one reaches quiescence will reduce communication disruption. But,
when the service reaches the finished state in a negligible period of time, NeCoMan’s
original synchronized reconfiguration algorithm might be a better choice. This solu-
tion needs less synchronization and lacks the potential performance overhead that
the packet-distinguishing support causes. Similarly, customization “no finishing”
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Question Cust.

Are the old and new services compatible? 6.2
Are the affected service components stateless? 6.3, 6.4
Do the affected components share their execution state (if any) with
their client applications?

6.3

Are the new service components able to process ongoing protocol-
transactions?

6.4

Can the new service components recover from inconsistent execution
states?

6.4

Do the old service components communicate by a protocol that termi-
nates locally or remotely?

6.5

Do the old server processes encapsulate state that goes beyond the
execution of a single protocol transaction?

6.5

Do the new components employ active objects or not? 6.6
Do the old and new components employ only client or server processes
instead of both?

6.7

Do the old and/or new server processes communicate by a unidirec-
tional or bidirectional communication protocol?

6.8

Table 6.3: Distributed reconfigurations: questions that the network administrator
must answer to specify the service characteristics. The right column lists the related
customizations.

only reduces the reconfiguration overhead when the effect of potential inconsisten-
cies on the network performance is insignificant10. Hence, NeCoMan should also
take into account this context specific information to decide whether or not to apply
this customization.

6.10.3 Limited openness

To identify which customizations it can apply, NeCoMan checks for each customiza-
tion if all associated pre-conditions are fulfilled. NeCoMan therefore requires from
the network administrator to specify the service characteristics and reconfigura-
tion semantics by answering the questions listed in Tables 6.3 and 6.4, respectively.
Hence, NeCoMan restricts the contribution needed to conduct a correct and opti-
mized reconfiguration.

6.10.4 Reusability

Most customizations presented in this chapter involve only re-ordering and omitting
the (existing) reconfiguration actions that both basic algorithms incorporate. The

10This has already been explained in Section 4.8.2
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Question Cust.

Do the affected nodes impose a safe state by deactivating the old com-
ponents immediately and transferring their execution state?

6.3

Does the network tolerate packet re-ordering? 6.3
Do the affected components operate in a best-effort network? 6.4
Does the network restore from or tolerate inconsistent execution states? 6.4
Can the network deal with incorrect service compositions? 6.2
Does the reconfiguration involves service addition, replacement or re-
moval?

6.9

Table 6.4: Questions that the network administrator must answer to specify the
reconfiguration semantics. The right column lists the related customizations.

customizations presented in Sections 6.3, 6.8, and 6.9, however, have also introduced
new reconfiguration actions – APDmark

new , APD
′mark
new , APD

disp
old−new, RPDmark

new ,
RPD

disp
old−new, LI

′ext
old−new, LIint

new, and UIint
old , to be precise. These new reconfigura-

tion actions invoke only the predefined set of operations that a node’s reconfigura-
tion support must provide. The customizations presented in this chapter, therefore,
do not compromise NeCoMan’s ability to be reused on top of other flow-oriented,
component-based protocol stack architectures besides DiPS+.

We conclude that the basic distributed reconfiguration algorithms ex-
tended with the customizations presented in this chapter enable NeCo-
Man to achieve its objectives.
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Chapter 7

Design and reconfiguration
overhead

In the previous chapters we presented NeCoMan’s (basic) reconfiguration algorithms
as well as the customizations to these algorithms that are included. This chapter
changes focus slightly and discusses part of NeCoMan’s design. Besides, we also
evaluate the actual overhead that the NeCoMan middleware brings about.

7.1 Design

To promote reuse, NeCoMan decouples the logic to define customized reconfig-
urations from node-specific support to execute these reconfigurations. This sep-
aration of concerns enables to reuse the same reconfiguration logic for different
programmable node architectures. This is an important advantage, as NeCoMan’s
reconfiguration logic is complex and error-prone to develop from scratch.

As illustrated in Figure 7.1, this separation of concerns has been achieved by
splitting up NeCoMan’s functionality into a script generator (which encapsulates
the reconfiguration logic) and node-specific virtual machines (to execute these re-
configuration scripts). In short, the script generator (as its name suggests) creates
tailored and optimized reconfiguration scripts. These scripts seek to reconfigure
various node architectures (such as Click [75], Netkit [36] and DiPS+ [97, 99]), and
so they do not include platform-specific expressions. The affected programmable
nodes, therefore, must provide a node-specific virtual machine (VM) to execute
these portable reconfiguration scripts. Hence, those VMs are responsible for carry-
ing out the actual node reconfiguration.

An additional advantage of separating both concerns (besides promoting reusabil-
ity) includes that the reconfiguration logic does not have to be executed on the net-
work nodes themselves. A network administrator or adaptive network management

175
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Figure 7.1: High-level overview of the NeCoMan architecture

software can generate reconfiguration scripts outside the network or on dedicated
nodes, and upload them to the affected programmable nodes when reconfiguration
is required. This way, composing a customized reconfiguration does not consume
(the often limited) node resources.

7.1.1 NeCoMan reconfiguration script

So, to promote reusability, the script generator is responsible for creating tailored
and portable reconfiguration scripts for all nodes participating in a reconfiguration.
Listing 7.1 depicts such a script for replacing Rold with Rnew on one specific node
(that is, as part of replacing the complete reliability service). To be sufficiently
portable, these reconfiguration scripts do not include platform-specific expressions.
Instead, they specify (1) the reconfiguration operations that the affected node must
execute and (2) the synchronization operations that are required to correctly syn-
chronize distributed reconfigurations.

Reconfiguration operations. Recall that NeCoMan’s reconfiguration actions
do nothing more than coordinating the invocation of (some of) the eight recon-
figuration operations that the underlying node must provide1. NeCoMan’s script

1as explained in Section 3.5.2, page 67
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generator, therefore, determines for each reconfiguration the operations that have
to be invoked as well as their invocation sequence. To illustrate this, line 2 specifies
the execution of CCnew, which includes invoking the node’s reconfiguration sup-
port to execute the “create” operation. Next, lines 3 and 4 specify the execution of
LOint

new, which involves linking Rnew’s data-outport to the inport of the lower layer.

Synchronization operations. Besides reconfiguration operations, a reconfigu-
ration script can also include “synchronization operations”. These synchronization
operations specify the distributed coordination that is needed to correctly execute
a reconfiguration. Line 9, for instance, expresses that message A must be sent from
the node where this script is executed towards node 192.168.150.2. In addition,
line 21 specifies that message B sent from node 192.168.150.2 must have arrived
before continuing the reconfiguration of the affected node.

1 # I n s t a l l a t i o n phase
2 create ( component id="Rnew" , c lass name="NewRetrComp" ) ;
3 l ink ( source comp="Rnew" , s ou r c e po r t="data -outport" ,
4 dest comp="LowerLayer" , d e s t po r t="inport" ) ;

6 # Fin i sh ing phase
7 intercept packets ( component id="Rold" , p r o c e s s i d="retransmit" ) ;
8 impose safe state ( component id="Rold" , p r o c e s s i d="retransmit" ) ;
9 sync notify ( mes sage s t r i ng="A" , d e s t add r e s s="192.168.150.2 " ) ;

11 # Act ivat ion phase
12 activate processes ( component id="Rnew" , p r o c e s s i d="retransmit" ) ;
13 unlink ( source comp="LowerLayer" , s ou r c e po r t="outport" ,
14 dest comp="Rold" , d e s t po r t="ack -inport" ) ;
15 l ink ( source comp="LowerLayer" , s ou r c e po r t="outport" ,
16 dest comp="Rnew" , d e s t po r t="ack -inport" ) ;
17 unlink ( source comp="UpperLayer" , s ou r c e po r t="outport" ,
18 dest comp="Rold" , d e s t po r t="data -inport" ) ;
19 l ink source comp="UpperLayer" , s ou r c e po r t="outport" ,
20 dest comp="Rnew" , d e s t po r t="data -inport" ) ;
21 sync wait ( mes sage s t r i ng="B" , s ou r c e addr e s s="192.168.150.2 " ) ;
22 release packets ( component id="Rnew" , p r o c e s s i d="retransmit" ) ;

24 # Removal phase
25 unlink ( source comp="Rold" , s ou r c e po r t="data -outport" ,
26 dest comp="LowerLayer" , d e s t po r t="inport" ) ;
27 remove( component id="Rold" ) ;

Listing 7.1: Example of a reconfiguration script. This script specifies the replace-
ment of Rold with Rnew (as part of replacing the complete reliability service). Note
that this reconfiguration involves finishing the old reliability service before activat-
ing the new one.
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7.1.2 Creating customized reconfiguration scripts

As illustrated in Figure 7.1, NeCoMan’s script generator creates these tailored re-
configuration scripts starting from (1) a declarative description of the recomposi-
tion that must be executed, (2) a specification of the service characteristics and the
reconfiguration semantics, and (3) an overview of the IP-addresses of all nodes par-
ticipating in this reconfiguration. The recomposition description must be expressed
in terms of link, unlink, create, and remove primitives (as these are the primitives
to define a composition). To illustrate this, Listing 7.2 sketches the description that
was used to define the replacement of Rold with Rnew. In addition, the specification
of the service characteristics and reconfiguration semantics results form answering
the questions listed in Tables 4.5, 4.6, 6.3, and 6.42. To illustrate this, Table 7.1
lists the service characteristics and reconfiguration semantics that have resulted in
the script that Listing 7.1 depicts.

create ( component id="Rnew" , c lass name="NewRetrComp" ) ;
unlink ( source comp="UpperLayer" , s ou r c e po r t="outport" ,

dest comp="Rold" , d e s t po r t="data -inport" ) ;
unlink ( source comp="Rold" , s ou r c e po r t="data -outport" ,

dest comp="LowerLayer" , d e s t po r t="inport" ) ;
unlink ( source comp="LowerLayer" , s ou r c e po r t="outport" ,

dest comp="Rold" , d e s t po r t="ack -inport" ) ;
l ink source comp="UpperLayer" , s ou r c e po r t="outport" ,

dest comp="Rnew" , d e s t po r t="data -inport" ) ;
l ink ( source comp="Rnew" , s ou r c e po r t="data -outport" ,

dest comp="LowerLayer" , d e s t po r t="inport" ) ;
l ink ( source comp="LowerLayer" , s ou r c e po r t="outport" ,

dest comp="Rnew" , d e s t po r t="ack -inport" ) ;
remove( component id="Rold" ) ;

Listing 7.2: A declarative reconfiguration description that specifies the replacement
of Rold with Rnew (as part of replacing the complete reliability service).

NeCoMan’s script generator creates customized reconfiguration scripts in two
steps. The script generator first composes a tailored reconfiguration algorithm
starting from the specified service characteristics and reconfiguration semantics.
This includes (1) selecting the proper basic reconfiguration algorithm to start from,
and (2) identifying which customizations can be applied to this algorithm. Appen-
dices F and L explain this customization procedure in more detail by presenting the
order in which NeCoMan’s script generator applies customizations to its local and
distributed reconfiguration algorithms, respectively.

Once a tailored algorithm is composed, NeCoMan’s script generator converts
this algorithm into reconfiguration scripts for all nodes participating in the recon-
figuration. For each reconfiguration action that the algorithm includes, the script
generator determines the associated reconfiguration operations that must be in-
voked. This can be achieved by taking into account the declarative description of

2As explained in Sections 4.8.3 and 6.10.3
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Service characteristics: question Answer

Are the old and new services compatible? No
Are the affected service components stateless? No
Do the affected components share their execution state (if any)
with their client applications?

No

Are the new service components able to process ongoing
protocol-transactions?

No

Can the new service components recover from inconsistent exe-
cution states?

No

Do the old service components communicate by a protocol that
terminates locally or remotely?

Yes

Do the old server processes encapsulate state that goes beyond
the execution of a single protocol transaction?

No

Do the new components employ active objects or not? Yes, their
new client
processes do

Do the old and new components employ only client or server
processes instead of both?

Only client
processes

Do the old and/or new server processes communicate by a uni-
directional or bidirectional communication protocol?

Bidirectional
protocol

Reconfiguration semantics: question Answer

Do the affected nodes impose a safe state by deactivating the old
components immediately and transferring their execution state?

No

Does the network tolerate packet re-ordering? No
Do the affected components operate in a best-effort network? No
Does the network restore from or tolerate inconsistent execution
states?

No

Can the network deal with incorrect service compositions? No
Does the reconfiguration involves service addition, replacement
or removal?

Replacement

Table 7.1: Service characteristics and reconfiguration semantics that have resulted
into the reconfiguration script depicted in Listing 7.1.

the recomposition that the network administrator must provide. The reconfigura-
tion operations that the script in Listing 7.1 includes, for instance, are based on the
reconfiguration description specified in Listing 7.2.

Besides the reconfiguration operations, the script generator also determines the
synchronization operations that must be added to the reconfiguration scripts. To
be precise, the script generator translates each synchronization point into a “sync-
wait” instruction (see line 21 in Listing 7.1). When synchronization messages are to
be sent, in contrast, the script generator adds “sync-notify” instructions to the re-
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Figure 7.2: High-level overview of the NeCoMan architecture when employed to
customize DiPS+ protocol stacks.

configuration scripts (see line 9 in Listing 7.1). Note that the network administrator
must specify the associated IP-addresses3.

7.1.3 Virtual machine to execute reconfiguration scripts

Each reconfigurable node must provide a node-specific virtual machine (VM) to
interpret and execute these portable reconfiguration scripts. To illustrate that the
functionality of this VM can be kept very lightweight, we (briefly) present the DiPS+
VM in this subsection. This is a proof-of-concept VM that has been developed to
reconfigure DiPS+ networks. Note that we do not intend to give a full-featured
overview of this VM, but instead briefly elaborate on how this VM deals with the
reconfiguration and synchronization operations that a NeCoMan script specifies.

Reconfiguration operations. As discussed in Section 3.3, we developed the
CuPS (Customizable Protocol Stacks) platform to assist NeCoMan in dynamically
recomposing DiPS+ protocol stacks. The DiPS+ VM, therefore, does not execute
the specified reconfiguration operations by itself, but instead invokes CuPS to ac-
complish this. This is illustrated in Figure 7.2.

Synchronization operations. Node reconfiguration support like CuPS, how-
ever, is not supposed to assist a reconfiguration middleware in synchronizing a
distributed reconfiguration. The DiPS+ VM therefore deals with synchronization
operations by itself. As losing these messages compromises the execution of a dis-
tributed reconfiguration, the current proof-of-concept implementation of the DiPS+

3as stated in the beginning of this subsection
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VM uses a simple reliability protocol that acknowledges the correct arrival of each
synchronization message. These synchronization and acknowledgement messages,
however, cannot be transmitted by the protocol stack being recomposed, as this may
cause deadlock situations. So, the DiPS+ VM uses a different stack to exchange
synchronization messages (as illustrated in Figure 7.2).

Furthermore, the DiPS+ VM collects all incoming synchronization messages in
a blackboard data-structure. When a “sync-wait” operation must be executed, the
DiPS+ VM checks the blackboard for the arrival of the specified synchronization
message. If this message has not yet been received, the DiPS+ VM delays the
execution of the reconfiguration until the blackboard announces its arrival.

7.2 Reconfiguration overhead

Additionally, we (briefly) evaluate the reconfiguration overhead that the DiPS+
VM brings about4. To do so, we investigate the actual cost incurred by a number
of reconfigurations. This cost will be evaluated in terms of

1. the communication disruption that these reconfigurations cause, and

2. the reconfiguration time.

The first metric quantifies the period of time in which the affected nodes will
be unable to process packets. This period must be as small as possible, so as to
minimize the impact of a dynamic reconfiguration on the network quality attributes
(which include availability, response-time, and throughput [59]). The second metric
the time that it takes to complete a reconfiguration.

7.2.1 Test configuration

To evaluate the reconfiguration overhead of the DiPS+ VM, we measured the cost
of adding, replacing, and removing a compression service and a reliability service
on a DiPS+ network5. Note that these services have different characteristics, and
thus represent different types of network services. The DiPS+ compression service,
for instance, is a lightweight service that operates at the DiPS+ IP layer. The
DiPS+ implementation of the reliability service, in contrast, is more cpu-intensive
and operates at the transport layer of the OSI model. To be precise, this service
has been developed to extend the DiPS+ UDP layer.

Figure 7.3(a) sketches the test setup that is used for measuring the cost of
adding, replacing, and removing the compression service. In this configuration

4Appendices E and K provide an extra analysis of the effect on reconfiguration overhead that
some of the customizations presented in Chapters 4 and 6 bring about.

5The DiPS+ network consists of a number of DiPS+ routers and end-nodes that each run on
separate PCs. These PCs have 256 MB RAM, use Intel Pentium 2 400Mhz processors and run
Linux 2.4.25. All software is written in Java, compiled using the Sun 1.4.2 JDK.
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(a) Configuration to evaluate the cost of adding,
replacing and removing the compression service
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(b) Configuration to evaluate the cost of
adding, replacing and removing the reliability
service

Figure 7.3: Test setup to evaluate the overhead that DiPS+ VM causes.

nodes A and C represent source nodes transmitting test packets to nodes B and
D. The compression service will be used on routers K, N, M, and O (which are
all DiPS+ routers). Packets will be compressed on routers K and N, and are
decompressed afterwards when passing through routers M and O. Finally, node
T coordinates all test activities. To minimize the impact of the latter on regular
network communication, node T communicates with the other nodes and routers
in this setup through a separate network (symbolized in Figure 7.3(a) by dotted
lines).

The test setup that is used for measuring the cost of adding, replacing, and
removing the reliability service, however, is slightly different. This is because the
reliability service (in contrast to the compression service) operates at the transport
level – that is, between two end-nodes. The test configuration that is used to
measure the overhead of these reconfigurations therefore includes only one source
and one sink node communicating with each other over a single path. This setup is
illustrated in Figure 7.3(b). Note that in this test configuration the retransmission
and acknowledgement component will be added, replaced and removed from nodes
A and B, respectively.

Finally, note that the addition, replacement and removal of both services has
been executed both with and without applying the “activate before finishing” cus-
tomization6. This allows us to compare the overhead of the (basic) algorithm pre-
sented in Section 5.4 (which includes reaching quiescence before activating the new
service) with the overhead of the algorithm presented in Section 6.3 (which involves
activating the new service before the old one is quiescent). In the next subsections
we evaluate this overhead in terms of communication disruption and reconfiguration
time7.

6This customization is described in Section 6.3.
7as discussed in the beginning of this section
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7.2.2 Communication disruption

Reconfigurations that involve the compression service

To determine the communication disruption that the DiPS+ VM causes, we mea-
sured the effect of each reconfiguration on the packet arrival frequency. When the
compression service is involved, senders A and C each send out a new test packet
every 180 ms. Previous experiments have indicated that this is the highest send-
ing frequency at which limited variation on the packet arrival frequency will be
experienced when using compression on nodes K, M, N and O. By increasing this
sending frequency, the variation on the time between successive packet arrivals in-
creases as well, which in turn obfuscates the communication disruption that the
reconfiguration causes.

Figure 7.4 illustrates the resulting communication disruption measured at node B
when adding, replacing or removing the compression service. We can clearly deduce
from these graphs that (for this test setup) each reconfiguration causes less com-
munication disruption if the new service becomes activated before finishing the old
one. In that case, only 2 packets arrive at a moment in time different from what is
expected (packets 11 and 12). When the old service becomes finished before acti-
vating the new one, however, 5 packets arrive at a moment in time different from
what is expected (see packets 11 to 15). Furthermore, note that the “peak delay” is
significantly larger when the old service becomes finished before activating the new
one: packet 11 arrives approximately 680 ms later than expected. When activating
the new service before finishing the old one, this delay is approximately 200 ms.

Besides, one can also observe from Figure 7.4 that packets 12 to 15 arrive very
short after each other at their destination when the old service becomes finished
before activating the new one. This is because the current implementation of CuPS
releases intercepted packets almost immediately one after another. Besides, since
(for these test reconfigurations) the time to process these intercepted packets is
smaller than the frequency at which packets are transmitted from their source to
their destination, new packets were not delayed by the processing of these inter-
cepted packets. All this explains why the arrival frequency stabilizes rather abrupt
(instead of gradually) for each of these reconfigurations.

As a final remark to these test results, note that communication disruption is
similar when adding, replacing or removing the compression service. The reason
for this is twofold. First, we use the same technique to impose a safe state over
the old compression service (in case of replacement or removal) as to finish the
old “dummy” service (in case of addition). For each of these reconfigurations, the
nodes hosting the server processes (that is, node M and O) wait for 500 ms to
make sure that all packets have arrived, and thus quiescence is reached. Second,
the time to initialize the functionality of the new compression service is very low.
The first packet that uses this compression service thus will not suffer (significant)
extra delay. All this explains why the three graphs in Figure 7.4 are similar.
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(a) Adding compression service
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(b) Replacing compression service

 0

 200

 400

 600

 800

 1000

161310 

tim
e 

be
tw

ee
n 

cu
rr

en
t a

nd
 

 p
re

vi
ou

s 
pa

ck
et

 a
rr

iv
al

 (
m

s)

arrived packet

finish before activation
activate before finishing

(c) Removing compression service

Figure 7.4: Communication disruption measured at node B when adding, replacing
and removing the DiPS+ compression service. These graphs depict the variation on
the interval between successive packet arrivals that was measured for each of these
reconfigurations.

Reconfigurations that involve the reliability service

Besides the addition, replacement and removal of the compression service, we also
measured the communication disruption that the DiPS+ VM causes when adding,
replacing and removing the reliability service. To measure the effect of these re-
configurations on the frequency at which packets arrive at node B, sender A sends
out a new test packet every 280 ms. Similar to the tests with the compression
service, this frequency results from previous experiments to determine the highest
sending frequency at which limited variation on the packet arrival frequency will be
experienced when the reliability service is deployed.

Figure 7.5(a) illustrates the communication disruption measured at node B when
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(a) Adding reliability service
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(b) Replacing reliability service
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(c) Removing reliability service

Figure 7.5: Communication disruption measured at node B when adding, replacing
and removing the DiPS+ reliability service.

adding the reliability service to nodes A and B8. Note that the peak delays that
this reconfiguration causes are higher than when the compression service is involved.
For every service addition, however, we used the same approach to reach quiescence
(that is, waiting for 500 ms at the node hosting the server process). We therefore
attribute this higher peak delay to the initialization cost of the (new) reliability
components. The first packet that a new reliability component processes, initializes
various reliability specific concerns (including session management, timer activation,
etc.). Hence, this adds an extra delay to the processing of that packet, which

8Note that in contrast to the addition of the compression service, not 5 but 4 packets arrive at a
moment in time different from what is expected (see packets 11 to 14). This difference results from
the sending frequency, which is lower when the reliability service is involved than when adding the
compression service.
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explains the higher peak delays.
Figure 7.5(b) illustrates the communication disruption when replacing the relia-

bility service with a new version. If the old service becomes finished before activating
the new one, the replacement of this reliability service causes less communication
disruption than its addition. This is because (in this test configuration) replacing
the reliability service involves intercepting packets for approximately 340 ms, while
in case of adding this service packets become intercepted for approximately 790
ms9.

Finally, Figure 7.5(c) displays the communication disruption that the DiPS+
VM causes when removing the reliability service. In comparison to Figure 7.5(b), it
catches the eye that the removal of the DiPS+ retransmission service causes less ser-
vice disruption than its replacement. However, for both reconfigurations the same
mechanism is used to detect quiescence (that is, monitoring Rold at node A until
its retransmission queue is empty and no packets are currently being processed).
We therefore attribute the extra disruption that a replacement causes again to the
the initialization time of the (new) reliability components. As we already explained
before, the first packet that these components process will initialize various reliabil-
ity specific concerns, which in turn causes an extra delay to the processing of this
packet.

Besides, note that the difference in service disruption for both graphs in Fig-
ure 7.5(c) is very small. Hence, (for this reconfiguration) the DiPS+ VM causes
similar overhead whether or not it applies the “activate before finishing” customiza-
tion. We (partially) attribute this to the inefficient implementation of the marking
and dispatching components, which adds an extra delay to the packets that must
be de-multiplexed during reconfiguration. Because this overhead was also gener-
ated when removing the compression service, one could question why Figure 7.4(c)
does not depict a similar equality in service disruption for both reconfiguration sce-
narios – that is, “activate before finishing” and “finish before activation”. This is
because driving the compression service to quiescence caused (significantly) more
service disruption than when the reliability service was involved. By reducing the
time it takes for the compression service to reach quiescence, the benefit of apply-
ing the “activate before finishing” customization on the service disruption that this
reconfiguration causes will decrease as well (similar as for removing the reliability
service).

7.2.3 Reconfiguration time

Finally, Table 7.2 lists the time that it took for the DiPS+ VM to complete each
reconfigurations discussed above. This overview illustrates a significant variation in
reconfiguration time: the minimum time to complete a reconfiguration was 271 ms,
while the maximum time was 1500 ms. It is clear that this variation results from (1)

9This results from the adopted approach to reach quiescence: the node hosting the server
processes (that is, node B) waits for 500 ms to make sure that all packets have arrived.



7.3 Conclusion 187

reconfiguration reconfiguration time (ms)
finish before activate before
activation finishing

add compression 979 1290
replace compression 850 1187
remove compression 779 1124

add reliability 1296 1500
replace reliability 818 1128
remove reliability 271 601

Table 7.2: The time that it takes for the DiPS+ VM to add, replace and remove
the compression and reliability service.

the different amount of reconfiguration actions that the DiPS+ VM has to execute
for each reconfiguration, and (2) the different amount of nodes participating in
the reconfiguration, which affects the execution time of the “sync-wait” and “sync-
notify” operations.

7.3 Conclusion

In this chapter we discussed the design of the NeCoMan middleware. To promote
reuse, the functionality of this middleware has been split up into a script generator
on the one hand (which generates tailored and portable reconfiguration scripts) and
node-specific virtual machines on the other hand (to execute these reconfiguration
scripts). In addition, we presented (part of) the DiPS+ VM to illustrate how a
NeCoMan VM can deal with the reconfiguration and synchronization operations
that a reconfiguration script includes. Finally, we evaluated the reconfiguration
overhead that this DiPS+ VM causes.
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Chapter 8

Related research

Chapter 2 has already (briefly) discussed related work in the fields of programmable
networks, dynamic software reconfiguration, and dynamic change management. To
complete this survey, we compare NeCoMan in this chapter in more detail with a
number of research initiatives in the field of programmable networks that are closely
related. We classify these research initiatives based on whether they support local
or distributed reconfigurations.

8.1 Local reconfigurations

In [82], Lee and Chang present a framework to dynamically recompose component-
based protocol stacks. The design of these protocol stacks is very similar to DiPS+
stacks. Besides, Lee and Chang’s framework supports the addition, removal, and
replacement of components to/from a running protocol stack. In short, the add
and remove operations are similar to the insmod and rmmod utilities of the Linux
module system, while the replace operation involves state transfer to preserve con-
sistency. Performance measurements indicate that replacing a TCP component
takes around 200 ms1.

When comparing this architecture with NeCoMan/CuPS/DiPS+, we point out
the following differences. First, Lee and Chang’s framework embodies one single
reconfiguration algorithm, which is comparable to NeCoMan’s basic local reconfig-
uration algorithms. Second, this algorithm binds the new component’s outports
after interrupting the old component. As explained in Section 3.5.2, to limit the
communication disruption that a reconfiguration causes, NeCoMan binds the new
component’s outports once this component is instantiated. Third, instead of inter-
cepting packets, Lee and Chang’s framework governs a “safe reconfiguration point”
by coordinating the execution of all active threads. When the reconfiguration thread

1These tests are executed on a Celeron 1.13 GHz PC.
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is modifying a composition, no other thread can invoke the affected components si-
multaneously. Finally, the employed reconfiguration support is tightly coupled to
the protocol stack architecture that will be recomposed, thus limiting its reusability.

Another programmable network architecture that supports dynamic reconfigu-
ration is the Click modular router. Click is a software architecture developed at
MIT for building flexible and configurable routers [75]. Similar to DiPS+ proto-
col stacks, these routers are assembled from fine-grained components implementing
simple router functions (like packet classification, queueing, scheduling, etc.). To
build a router configuration, the user chooses a collection of these components and
connects them into a pipeline.

Recomposing a click router, however, involves changing the complete router con-
figuration (instead of adding, replacing or removing some of its components). To
execute a reconfiguration, the user has to install a new reconfiguration file with
a hot-swapping option. This new configuration will only be brought into use if it
initializes correctly (otherwise Click continues using the current router configura-
tion). If the new configuration is correct, Click atomically captures the old compo-
nents’ state information and reinstates this into the new composition. All enqueued
packets, for instance, are moved into the new composition. So, in comparison to
NeCoMan/CuPS/DiPS+, Click’s hot-swapping support (1) replaces the complete
router composition, (2) supports one single reconfiguration scenario, which involves
state transfer, and (3) is tightly coupled to the Click architecture.

Also Netkit, developed at Lancaster University [35, 36], supports dynamic recon-
figuration. Netkit provides network programming support that, among others, seeks
to facilitate the management of node configuration and reconfiguration. To accom-
plish this, the Netkit architecture (1) applies the OpenCOM component model2,
(2) provides extensive support for structural and behavioral reflection, and (3) uses
the concept of component frameworks (CFs) to maintain integrity during reconfig-
uration.

Although Netkit provides (generic and principled) support to implement dy-
namic reconfigurations, the latter seems to be the developer’s responsibility. To
illustrate this, consider the Netkit IP router presented in [36]. This router provides
support to load and bind new components in an IXP1200 environment3. Netkit’s
extensive use of reflection also enables to equip the affected component-outports
with locks if needed. Furthermore, extra functionality to reach a reconfiguration-
safe state can be added to the router CF, which manages the (re-)composition of
routing functionality4. Composing all these features to a correct and efficient re-
configuration process, however, appears to be the task of the developer. Since this

2In short, OpenCOM is a lightweight and reflective component model developed at Lancaster
University that uses the core features of Microsoft COM to underpin its implementation [37]

3For more information about the Intel IXP1200 network processor, see [3].
4A (Netkit) component framework embodies “rules and interfaces” that make sense for a specific

domain. The router CF presented in [37], for instance, includes knowledge about the composition
and reconfiguration of ‘plugged-in’ packet-forwarding components.
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can be complex and error-prone, extending Netkit with NeCoMan as an additional
meta-layer may provide a more controlled way to conduct Netkit reconfigurations.

In [43], Feng et al. describe an architecture to conduct dynamic reconfigura-
tion of network management software (such as SNMP). In comparison to NeCo-
Man/CuPS/DiPS+, the embodied hot-swapping functionality supports one single
reconfiguration scenario that involves service replacement only. This is because
Feng’s architecture carries out a reconfiguration by replacing a component’s content
instead of recomposing the affected node. Furthermore, Feng et al. present some
(initial) ideas on how to coordinate distributed reconfigurations, which involves the
use of multicast synchronization messages and synchronized system clocks. These
ideas, however, are not further explored in [43].

Other out-of-band active network implementations like VERA [71], the Bow-
man NodeOS [95], the PromethOS NP framework [117] and Washington Univer-
sity’s pluggable router framework [38] apply a different approach to dynamically
reconfigure a programmable node. These architectures do not support router re-
composition, but instead enable to dynamically extend router functionality with
new forwarding services that apply to specific packet flows. To support this ex-
tensibility, the architectures listed above all provide a “programmable classifier”,
which delegates incoming packets to the appropriate service. Adding a new service
to these routers thus involves (1) loading the associated functionality and (2) ex-
tending the programmable classifier with an extra filter which identifies the packet
flows that should be redirected to this new service.

Note that these reconfigurations are similar to recompositions that involve ac-
tivation before finishing. After loading new service components, they become ac-
tivated immediately (that is, without waiting until other services are finished) by
modifying the programmable classifier. These new service components thus operate
in parallel with other router forwarding services until the latter become removed.

Finally, recall that active network implementations such as ANTS [141], Dan
[39], NetScript [144] and SwitchWare [9] (to only name a few) support in-band
customizations at packet transport granularity. Similar to the out-of-band active
networks discussed above, these in-band active networks do not support the recom-
position of running nodes but instead allow to dynamically plug-in new services
that active packets can invoke when passing by. So, the only pre-condition that
must be fulfilled for these active packets to use a new service includes that the
service is present on the affected node. The reconfiguration of these in-band active
network architectures, therefore, requires less coordination than when recomposing
out-of-band active networks.

8.2 Distributed reconfigurations

Chen et al. present in [30] a system to coordinate the dynamic adaptation of dis-
tributed services and communication protocols. Although this architecture and
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Figure 8.1: The protocol switch protocol in Ensemble

the NeCoMan middleware both coordinate distributed service reconfigurations, we
point out three differences. First, Chen’s adaptation algorithm always activates
the new service before finishing the old one. When guaranteed packet ordering
is required, the switch-over of incoming packets (arriving from the network) from
the old to the new service components is deferred until the old components have
processed all incoming packets. In addition, their adaptation algorithm only sup-
ports service replacement. Second, unlike NeCoMan, Chen’s adaptation system is
an open framework that requires the service components’ developer to implement
part of the adaptation algorithm. Examples include the activation of a new ser-
vice component as well as some optimizations to the adaptation algorithm. Finally,
Chen’s adaptation system was not designed to be reused on top of various node
architectures. The system is an extension of Cactus, a framework for constructing
highly configurable middleware and protocol stacks [143]. The adaptation system
is therefore tightly coupled to the Cactus syntax as well as to its architecture.

Robbert van Renesse et al. presented Ensemble, a hierarchical framework for
constructing adaptive protocol stacks [133]. A distributed adaptation in Ensemble
involves replacing every affected protocol stack – that is, instead of replacing the
affected network-service components. These adaptations are coordinated by the
Protocol Switch Protocol (PSP), which is a fault-tolerant protocol that synchronizes
the participating stacks, assists them in finalizing their state, and performs the
necessary agreement before resuming communication. Similar to the NeCoMan
middleware, Ensemble seeks to facilitate the programming complexity of dynamic
distributed adaptations.

The PSP’s adaptation algorithm (depicted in Figure 8.1) is comparable to the
basic distributed reconfiguration algorithm that NeCoMan includes, except that it
conducts the replacement of entire protocol stacks rather than recomposing operat-
ing protocol stacks. Consequently, coordinating the sequence of activating the new
protocol stacks is unnecessary, since a stack can be invoked only when it is fully
operational. Besides, PSP elects one of the nodes that will be reconfigured to coor-
dinate the distributed reconfiguration. As illustrated in Figure 8.1, this coordinator
is responsible for managing a correct reconfiguration by collecting and broadcasting
synchronization messages from and to other nodes participating in this reconfigura-
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tion. In contrast to the NeCoMan middleware, the network load that such a single
coordination unit causes scales better when many nodes are involved. At the same
time, however, using a centralized coordination entity introduces a single point of
failure.

Furthermore, note that also in-band active networks do not require external
coordination to correctly activate a new service. To illustrate this, consider an
active packet that contains a pointer to a specific router service. On every node
that this packet visits, it activates the associated service. The new service thus
becomes activated in the correct order without the need for external coordination.
The only distributed coordination needed in this case involves the installation of
service libraries on all affected nodes before the active packets arrive. Besides,
note that active network architectures like ANTS [141] support automatic service
installation on an as-needed basis. If the service libraries that an ANTS-packet
requires are not present at a node, they are loaded dynamically using a lightweight
distribution protocol. This on-demand scheme thus makes the need to install service
libraries on a node before an active packet arrives redundant. This comes at the
cost, however, of increased startup latency.

Finally, we briefly mention protocol boosters. In short, protocol boosters repre-
sent a design methodology for programming networks [42, 88]. This methodology
imposes a number of design restrictions such that a booster (encapsulating protocol
functions) can operate correctly (albeit with lower performance) in the absence of
any booster-aware code [88]. These restrictions include that a booster can add,
delete, or delay messages of an existing protocol, but may not originate or termi-
nate that protocol. Besides, a booster element may not change the syntax of the
packets that it processes. These booster elements therefore do not jeopardize the
correct functioning of a network when inconsistent execution states or structural in-
consistencies come about5. Hence, this methodology makes the need to coordinate
distributed reconfigurations redundant6.

5in contrast, for instance, to a compression service
6In this case, NeCoMan applies both the “no coordinated activation” and the “no finishing”

customization to its first basic distributed reconfiguration algorithm
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Chapter 9

Conclusions and future
research

In this final chapter, we first recapitulate the main contribution of this work in
Section 9.1. Next, we present in Section 9.2 a critical reflection and some open
issues that are subject for future research. Finally, Section 9.3 presents future
research tracks that involve investigating the contribution of customizable change
management support like NeCoMan to research areas different from programmable
networking.

9.1 Contributions

As a summary, we list the main contributions of this work in the research areas dis-
cussed in Chapter 2: programmable networking, dynamic software reconfiguration
and dynamic change management.

Programmable networking

In the context of programmable networking, we have presented a middleware to
dynamically reconfigure out-of-band active networks, which has been published
in [65, 66, 70]. This middleware coordinates local and distributed node recom-
positions. Besides, this middleware fulfills the following requirements to meet its
objectives:

• Correct reconfigurations. The algorithms that NeCoMan encapsulates do
not compromise the correct network functioning in the course of a recon-
figuration (except when the network tolerates inconsistencies to occur). In
Chapters 3 and 5, we indicated that NeCoMan’s basic reconfiguration algo-
rithms conform to all reconfiguration conditions, and thus conduct correct
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reconfigurations. Besides, the customizations to these basic reconfiguration
algorithms presented in Chapters 4 and 6 do not compromise the correct net-
work functioning either, as long as all associated pre-conditions are fulfilled.

• Limited reconfiguration overhead. Because NeCoMan’s basic reconfigu-
ration algorithms do not guarantee limited reconfiguration overhead for every
reconfiguration, NeCoMan includes an extensive set of customizations to these
algorithms. These customizations optimize and tailor the employed reconfigu-
ration algorithm by switching the order in which some reconfiguration actions
are executed, and by discarding those actions that are redundant for a partic-
ular reconfiguration. Besides, part of the reconfiguration overhead that NeCo-
Man brings about is caused by the VM as well as by the node architecture
carrying out the reconfiguration operations that the VM invokes. Chapter 7
evaluated this overhead for the DiPS+ VM, which is a proof-of-concept VM
that has been developed to reconfigure DiPS+ networks.

• Limited openness. To carry out a customized reconfiguration, NeCoMan
only requires the network administrator to provide (1) a declarative descrip-
tion of the reconfiguration that must be executed, (2) a declarative descrip-
tion of the service characteristics and reconfiguration semantics. NeCoMan
then creates a customized reconfiguration algorithm based on these properties.
Consequently, the “openness” of this reconfiguration middleware to conduct
a correct and optimized reconfiguration is restricted.

• Reusability. To promote reuse, NeCoMan separates the logic to define a
customized reconfiguration (encapsulated by the script generator) from node-
specific support to execute this reconfiguration (encapsulated by the virtual
machine). As discussed in Chapter 7, separating these concerns enables to
reuse NeCoMan’s reconfiguration logic for other out-of-band active node ar-
chitectures as well – that is, besides DiPS+/CuPS. This is an important ad-
vantage, as NeCoMan’s reconfiguration logic is complex and error-prone to
develop from scratch.

We validated this middleware by carrying out various reconfigurations. These
include the runtime addition, replacement and removal of a compression service, a
fragmentation service, a reliability service and the (DiPS+ implementation of) the
TCP-booster developed at the University of Ghent [60].

Dynamic software reconfiguration

In the context of dynamic software reconfiguration, this dissertation has presented
an extensive analysis on how to coordinate both local and distributed out-of-band
compositional adaptations. Part of this analysis included defining a set of recon-
figuration conditions that must be fulfilled to conduct correct and efficient recon-
figurations. Because these reconfiguration conditions make explicit in what order
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reconfiguration actions must be executed, they (1) provide some guidance for the
development of future reconfiguration support, and (2) allow to reason about the
reconfiguration process.

Dynamic change management

Finally, in the context of dynamic change management, this dissertation has pre-
sented customizable change management support. As we explained in Chapter 2,
existing change management systems typically conform to the black-box philoso-
phy by encapsulating a single and fixed reconfiguration algorithm. Because these
systems do not allow developers to adapt the employed reconfiguration algorithm,
Hillman and Warren propose to open up change management support such that
the reconfiguration process can be customized to perform better in a specific con-
text [59]. We argue, however, that opening up dynamic change management support
increases again the costs and risks that dynamic software reconfiguration introduces.

NeCoMan, therefore, has been developed as customizable change management
support. In contrast to black-box change management systems, NeCoMan allows
a network administrator to customize the reconfiguration process by specifying the
service characteristics and reconfiguration semantics. In contrast to open change
management support, NeCoMan still protects the network administrator from the
complexity of composing a correct and efficient reconfiguration algorithm. We be-
lieve that this provides a good balance between controlling the costs and risks of
dynamic reconfiguration on the one hand, and supporting sufficient flexibility on
the other hand.

9.2 Critical reflection and open issues

The work presented in this dissertation still has room for enhancement and further
research.

Optimizing customization process

NeCoMan’s current version cannot always select the most optimal algorithm for each
reconfiguration. As discussed in Chapter 6, when replacing a stateful distributed
service that takes a long time to finish, for instance, activating the new service be-
fore the old one reaches quiescence reduces communication disruption. But, when
the service reaches the finished state in a negligible period of time, the first ba-
sic distributed reconfiguration algorithm might be a better choice. This solution
needs less synchronization and lacks the potential performance overhead that the
packet-distinguishing support causes. Similarly, omitting all finishing actions only
reduces the reconfiguration overhead when the effect of potential inconsistencies on
the network performance is insignificant. Future research, therefore, includes inves-
tigating what extra context specific information NeCoMan must take into account
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Figure 9.1: Compressed packets may leave the sub-net via node E without being
restored in their original form.

to optimize its customization process.

Failure recovery support

The current version of NeCoMan assumes that the execution of a reconfiguration
action never fails. When this occurs anyway, NeCoMan stalls its execution, thus
leaving the network in an inconsistent state. To support atomic reconfigurations in
this case, NeCoMan must be extended with (local and distributed) failure recovery
support. Future research, therefore, includes investigating the impact of such failure
recovery support on the current reconfiguration algorithms.

Additional validation

Although NeCoMan is prepared to be reused on top of various component-based
node architectures, extra validation is needed to confirm its portability. Future
research, therefore, includes extending node architectures like Netkit [35, 36] and
Click [75] with a NeCoMan VM. This allows to validate NeCoMan’s reconfigura-
tion algorithms in different out-of-band active network setups besides DiPS+/CuPS
networks.

Network-wide consistency preservation in case of dynamic network topolo-
gies

NeCoMan (only) preserves consistency in the course of a reconfiguration. When
the topology of the network being reconfigured changes frequently, however, also
after completing the reconfiguration a correct network service composition must be
preserved. To illustrate this, consider the network setup depicted in Figure 9.1.
When node E connects to this sub-net after NeCoMan has added a compression
service to nodes A, B, C and D, then the network’s structural integrity gets broken.
This is because compressed packets may leave this sub-net without being restored
in their original form. Future research, therefore, involves exploring how to preserve
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network-wide consistency in a network characterized by a (highly) dynamic topol-
ogy. Possible solutions to be investigated include (1) changing the routing scheme,
and (2) managing topological changes such that new nodes cannot connect to a
network without being equipped with the required network services.

9.3 Additional future research tracks

Other future research tracks involve investigating the contribution of customizable
change management support like NeCoMan to research areas different from pro-
grammable networking. These include (1) reflective middleware, (2) middleware for
transparent application reconfiguration, and (3) dynamic distributed aspect weav-
ing.

Reflective middleware

Because the traditional role of middleware is to hide resource distribution and plat-
form heterogeneity from the application logic, it is a logical place to define dynamic
reconfiguration support related to various concerns like quality-of-service (QoS), en-
ergy management, fault tolerance, and security [91]. The dynamicTAO ORB [77, 78]
and OpenORB [20, 77] (developed at the University of Illinois and Lancaster Uni-
versity, respectively) achieve dynamic reconfigurability of these concerns with the
extensive use of reflection. This way, both middleware architectures are opened up
to support developers in implementing dynamic out-of-band reconfigurations.

It is our believe, however, that reconfiguration-specific openness should be con-
strained as the implementation of correct and efficient reconfiguration scenarios can
be complex and error-prone (hence compromising the benefit of dynamic reconfig-
uration). Extending middleware like dynamicTAO and OpenORB with NeCoMan-
like support (targeted at ORB reconfigurations instead of recompositions of pro-
grammable nodes) as an additional meta-layer may conceal this reconfiguration
complexity. Future research, therefore, includes investigating the benefits that can
be gained by extending reflective middleware with customizable change manage-
ment support.

Middleware for transparent application reconfiguration

Other middleware initiatives are targeted at supporting the reconfiguration of a
running system with maximum transparency for the application developers. The
work of Bidan et al. [19], for instance, seeks to accomplish this by extending CORBA
with a dynamic reconfiguration service. This service supports the recomposition of
CORBA applications by coordinating the addition, removal, and replacement of
single application components. In addition, Almeida et al. presented a dynamic
reconfiguration service for CORBA applications that (in contrast to Bidan’s work)
conducts the atomic replacement of multiple application components.
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Both reconfiguration services encapsulate only a single reconfiguration algo-
rithm, and therefore lack the opportunity to optimize recompositions if possible.
Future research, therefore, includes investigating the benefit of using customizable
change management support (like NeCoMan) to transparently reconfigure running
applications.

Dynamic distributed aspect weaving

A final research track that spin-offs from the work presented in this disserta-
tion relates to dynamic distributed aspect weaving. As Truyen and Joosen define
in [128, 129], the latter involves the ability to dynamically weave and unweave
distributed aspects on different computer nodes. These distributed aspects encap-
sulate services that are tightly coupled, including compression/decompression and
encryption/decryption.

To preserve system consistency during dynamic aspect weaving (and unweav-
ing), Truyen and Joosen present a model and an architecture for middleware,
called Lasagne, that supports run-time weaving of distributed aspects in an atomic
way [128]. This model supports in-band reconfigurations. Once an invocation be-
comes tagged with a so called “aspect identifier”, the latter propagates with the mes-
sage flow of the entire collaboration. On the nodes where needed, Lasagne activates
the aspect that the identifier specifies. This way, Lasagne preserves system-wide
execution consistency when weaving/unweaving distributed aspects.

A drawback of such in-band dynamic aspect weaving, however, is that it in-
creases the processing time for each invocation. Future research, therefore, is tar-
geted at investigating the benefits of out-of-band aspect weaving (including to what
extent out-of-band aspect weaving may perform better). For that reason, we plan
to validate NeCoMan’s reconfiguration support in the field of dynamic distributed
aspect weaving as well.
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[8] Mehmet Aksit and Zièd Choukair. Dynamic, adaptive and reconfigurable
systems overview and prospective vision. In Proceedings of the 23rd Interna-
tional Conference on Distributed Computing Systems Workshops (ICDCSW
’03), pages 84–89, Washington, DC, USA, 2003. IEEE Computer Society.

[9] D. Scott Alexander, William A. Arbaugh, Michael W. Hicks, Pankaj Kakkar,
Angelos D. Keromytis, Jonathan T. Moore, Carl A. Gunter, Scott M. Nettles,
and Jonathan M. Smith. The Switchware Active Network Architecture. IEEE
Network, 12(3):29–36, May/June 1998.

[10] D. Scott Alexander, Bob Braden, Carl A. Gunter, Alden W. Jackson, Ange-
los D. Keromytis, Gary J. Minden, and David Wetherall. Active Network
Encapsulation Protocol (ANEP). http://www.cis.upenn.edu/ dsl/switch-
ware/ANEP/docs/ANEP.txt, July 1997.

[11] João Paulo A. Almeida, Maarten Wegdam, Marten van Sinderen, and Lam-
bert J. M. Nieuwenhuis. Transparent Dynamic Reconfiguration for CORBA.
In Proceedings of the 3rd International Symposium on Distributed Objects and

201



202 BIBLIOGRAPHY

Applications (DOA 2001), pages 197–207, Rome, Italy, September 2001. IEEE
Computer Society.

[12] Elan Amir, Steven McCanne, and Randy Katz. An active service framework
and its application to real-time multimedia transcoding. In Proceedings of the
ACM SIGCOMM ’98 conference on Applications, technologies, architectures,
and protocols for computer communication, pages 178–189, Vancouver, British
Columbia, Canada, 1998. ACM Press.

[13] Gregory R. Andrews. Paradigms for process interaction in distributed pro-
grams. ACM Computing Surveys, 23(1):49–90, 1991.

[14] Oguz Angin, Andrew T. Campbell, Michael E. Kounavis, and Raymond R.-
F. Liao. The mobiware toolkit: Programmable support for adaptive mobile
networking. IEEE Personal Communications, 5(4):32–43, August 1998.

[15] Jason Baker and Wilson Hsieh. Runtime aspect weaving through metapro-
gramming. In Proceedings of the 1st international conference on Aspect-
oriented software development (AOSD ’02), pages 86–95, New York, NY,
USA, 2002. ACM Press.

[16] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, and
Randy H. Katz. A comparison of mechanisms for improving tcp performance
over wireless links. IEEE/ACM Transactions on Networking, 5(6):756–769,
1997.

[17] David Ball. A Smarter Way to Network: How an Intelligent, Systems-Based
Approach Reduces Complexity While Increasing Functionality. White Paper
Cisco Systems, October 2004.

[18] Samrat Bhattacharjee, Kenneth L. Calvert, and Ellen W. Zegura. An archi-
tecture for active networking. In Proceedings of the IFIP TC6 seventh in-
ternational conference on High performance netwoking VII (HPN ’97), pages
265–279, London, UK, UK, 1997. Chapman & Hall, Ltd.

[19] Christophe Bidan, Valérie Issarny, Titos Saridakis, and Apostolos Zarras. A
Dynamic Reconfiguration Service for CORBA. In Proceedings of the Inter-
national Conference on Configurable Distributed Systems (CDS 1998), pages
35–42, Washington, DC, USA, 1998. IEEE Computer Society.

[20] Gordon S. Blair, Geoff Coulson, Anders Andersen, Lynne Blair, Michael
Clarke, Fabio Costa, Hector Duran-Limon, Tom Fitzpatrick, Lee Johnston,
Rui Moreira, Nikos Parlavantzas, and Katia Saikoski. The Design and Imple-
mentation of Open ORB 2. IEEE Distributed Systems Online, 2(6), 2001.

[21] Toby Bloom. Dynamic Module Replacement in a Distributed Programming
System. PhD thesis, Massachusetts Institute of Technology, 1983. Also as
MIT LCS Tech. Report 303.



BIBLIOGRAPHY 203

[22] Toby Bloom and Mark Day. Reconfiguration in Argus. In Proceedings of the
International Workshop on Configurable Distributed Systems, pages 176–187,
London, England, March 1992.

[23] Matthias Bossardt, Takashi Egawa, Hideki Otsuki, and Bernhard Plattner.
Integrated service deployment for active networks. In Proceedings of the IFIP-
TC6 4th International Working Conference on Active Networks (IWAN ’02),
pages 74–86, London, UK, 2002. Springer-Verlag.

[24] Bob Braden, Lixia Zhang, Steve Berson, Shai Herzog, and Sugih Jamin. Re-
source ReSerVation Protocol (RSVP) – Version 1 Functional Specification,
September 1997. RFC 2205.

[25] Kenneth L. Calvert, Samrat Bhattacharjee, Ellen Zegura, and James Ster-
benz. Directions in Active Networks. IEEE Communications Magazine, Spe-
cial Issue on Programmable Networks, 36(10):72–78, October 1998.

[26] Andrew Campbell, Stephen Chou, Michael Kounavis, Vassilis Stachtos, and
John Vicente. NetBind: A Binding Tool for Constructing Data Paths in
Network Processor-based Routers. In Proceedings of the 5th conference on
Open Architectures and Network Programming (OpenArch 2002), pages 49–
60, New York City, NY, June 2002.

[27] Andrew T. Campbell, Michael E. Kounavis, Daniel A. Villela, John B. Vi-
cente, Hermaan G. De Meer, Kazuho Miki, and Kalai S. Kalaichelvan. Spawn-
ing Networks. IEEE Network, 13(4):16–29, July/August 1999.

[28] Andrew T. Campbell, Herman G. De Meer, Michael E. Kounavis, Kazuho
Miki, John B. Vicente, and Daniel Villela. A Survey of Programmable Net-
works. ACM SIGCOMM Computer Communications Review, 29(2):7–23,
April 1999.

[29] Prashant Chandra, Yang-Hua Chu, Allan Fisher, Jun Gao, Corey Kosak,
T.S. Eugene Ng, Peter Steenkiste, Eduardo Takahashi, and Hui Zhang. Dar-
win: Customizable Resource Management for Value-Added Network services.
IEEE Network, 15(1):22–35, 2001.

[30] Wen-Ke Chen, M.A. Hiltunen, and R.D. Schlichting. Constructing Adaptive
Software in Distributed Systems. In Proceedings of the 21st International
Conference on Distributed Computing Systems (ICDCS’01), pages 635–643.
IEEE Computer Society, 2001.

[31] Xuejun Chen. Extending RMI to Support Dynamic Reconfiguration of Dis-
tributed Systems. In Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS’02), Vienna, Austria, 2002. IEEE
Computer Society.



204 BIBLIOGRAPHY

[32] Jonathan E. Cook and Jeffery A. Dage. Highly Reliable Upgrading of Com-
ponents. In Proceedings of the 21st International Conference on Software En-
gineering (ICSE ’99), pages 203–212, Los Angeles, California, United States,
1999. IEEE Computer Society Press.

[33] Pascal Costanza. Dynamic Object Replacement and Implementation-Only
Classes. In 6th International Workshop on Component-Oriented Programming
(WCOP 2001), ECOOP related Workshop, Budapest, Hungary, June 2001.

[34] Pascal Costanza. Dynamic Replacement of Active Objects in the Gilgul Pro-
gramming Language. In Proceedings of the IFIP/ACM Working Conference
on Component Deployment (CD ’02), pages 125–140, London, UK, 2002.
Springer-Verlag.

[35] Geoff Coulson, Gordon Blair, Antônio Tadeu Gomes, Ackbar Joolia, Kevin
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[51] Claude Girault and Rüdiger Valk. Petri Nets for Systems Engineering - A
Guide to Modeling, Verification, and Applications. Springer, Berlin, 2003.

[52] Steven Glassman. A caching relay for the World Wide Web. Computer Net-
works and ISDN Systems, 27(2):165–173, 1994.

[53] Bob Gleichauf. Core Elements of the Cisco Self-Defending Network Strategy.
White Paper Cisco Systems, May 2005.

[54] Deepak Gupta and Pankaj Jalote. On-line software version change using state
transfer between processes. Software - Practice and Experience, 23(9):949–
964, 1993.



206 BIBLIOGRAPHY

[55] Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and Scott
Nettles. PLAN: A Packet Language for Active Networks. ACM SIGPLAN
Notices, 34(1):86–93, 1999.

[56] Michael Hicks, Jonathan T. Moore, D. Scott Alexander, Carl A. Gunter, and
Scott M. Nettles. PLANet: An active internetwork. In Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM 1999), volume 3, pages 1124–1133, New York, NY, USA, March
1999.

[57] Michael Hicks, Jonathan T. Moore, and Scott Nettles. Dynamic software
updating. In Proceedings of the ACM SIGPLAN 2001 conference on Pro-
gramming Language Design and Implementation (PLDI ’01), pages 13–23,
New York, NY, USA, June 2001. ACM Press.

[58] Michael Hicks and Scott Nettles. Active networking means evolution (or en-
hanced extensibility required). In Hiroshi Yashuda, editor, Proceedings of the
Second International Working Conference on Active Networks (IWAN 2000),
volume 1942 of Lecture Notes in Computer Science, pages 16–32. Springer-
Verlag, October 2000.

[59] Jamie Hillman and Ian Warren. An open framework for dynamic reconfig-
uration. In Proceedings of the 26th International Conference on Software
Engineering (ICSE ’04), pages 594–603, Washington, DC, USA, 2004. IEEE
Computer Society.

[60] Jeroen Hoebeke, Tom Van Leeuwen, Liesbeth Peters, Koen Cooreman, Ingrid
Moerman, Bart Dhoedt, and Piet Demeester. Development of a TCP protocol
booster over a wireless link. In Proceedings of the 9th Symposium on Com-
munications and Vehicular Technology in the Benelux (SCVT 2002), Louvain
la Neuve, oct 2002.

[61] Christine R. Hofmeister. Dynamic Reconfiguration of Distributed Applica-
tions. PhD thesis, Computer Science Department, University of Maryland,
College Park, 1993.

[62] Christine R. Hofmeister and James M. Purtilo. A Framework for Dynamic Re-
configuration of Distributed Programs. Technical Report CS-TR-3119, Com-
puter Science Department, University of Maryland, College Park, 1993.

[63] Syed Asad Hussain. An active scheduling paradigm for open adaptive network
environments. International Journal of Communication Systems, 17(5):491–
506, 2004.

[64] Van Jacobson, Bob Braden, and Dave Borman. TCP Extensions for High
Performance, May 1992. RFC 1323.



BIBLIOGRAPHY 207

[65] Nico Janssens, Lieven Desmet, Sam Michiels, and Pierre Verbaeten. NeCo-
Man: Middleware for Safe Distributed Service Deployment in Programmable
Networks. In Proceedings of the 3rd workshop on Adaptive and Reflective
Middleware, pages 256–261, Toronto, Ontario, Canada, 2004. ACM Press.

[66] Nico Janssens, Wouter Joosen, and Pierre Verbaeten. NeCoMan: Middleware
for Safe Distributed-Service Adaptation in Programmable Networks. IEEE
Distributed Systems Online, 6(7), July 2005.

[67] Nico Janssens, Sam Michiels, Tom Holvoet, and Pierre Verbaeten. A Modu-
lar Approach Enforcing Safe Reconfiguration of Producer-Consumer Applica-
tions. In Proceedings of the 20th IEEE International Conference on Software
Maintenance (ICSM ’04), pages 274–283. IEEE, IEEE Computer Society,
2004.

[68] Nico Janssens, Sam Michiels, Tom Mahieu, and Pierre Verbaeten. To-
wards Hot-Swappable System Software: The DiPS/CuPS Component Frame-
work. In 7th International Workshop on Component-Oriented Programming
(WCOP ’02), ECOOP related Workshop, Malaga, Spain, June 2002.

[69] Nico Janssens, Sam Michiels, Tom Mahieu, and Pierre Verbaeten. Towards
Transparent Hot-Swapping Support for Producer-Consumer Components. In
Proceedings of the 2nd International Workshop on Unanticipated Software
Evolution (USE ’03), pages 9–16, 2003.

[70] Nico Janssens, Elke Steegmans, Tom Holvoet, and Pierre Verbaeten. An
Agent Design Method Promoting Separation Between Computation and Co-
ordination. In Proceedings of the 2004 ACM Symposium on Applied Com-
puting (SAC’04), pages 456–461, Nicosia, Cyprus, 2004. ACM Press. Special
Track on Coordination Models, Languages and Applications.

[71] Scott Karlin and Larry Peterson. VERA: An Extensible Router Architecture.
Computer Networks, 38(3):277–293, February 2002.

[72] Eric P. Kasten and Philip K. McKinley. Perimorph: Run-Time Composition
and State Management for Adaptive Systems. In 24th International Confer-
ence on Distributed Computing Systems Workshops (ICDCS ’04 Workshops),
pages 332–337, Hachioji, Tokyo, Japan, March 2004. IEEE Computer Society.

[73] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
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Appendix A

Overview of all
reconfiguration actions

This appendix lists all reconfiguration actions that NeCoMan uses (as backing).
Note that these reconfiguration actions have been chosen thoroughly. On the one
hand, these actions should not be defined at a too low abstraction level, since
this has a negative effect on error-proneness and comprehensibility. At the same
time, however, their abstraction level should not be raised too far either, since this
compromises the flexibility of the employed reconfiguration algorithms.

primitive description
ACnew Activate the new component
APDmark

new Add marking support to the service-internal outports of the af-
fected component (APD stands for “add packet-distinguishing
support”)

APD
′mark
new Add marking support without binding the inports of the affected

marking component

APD
disp
old−new Add dispatching support to de-multiplex incoming packets and

delegate them towards the service-internal inports of the associ-
ated component (which can be the old or the new component)

APnew Start the active objects that the new component employs (AP
stands for “activate processes”)

AP client
new Start the active objects that the new client processes employ

AP server
new Start the active objects that the new server processes employ

CCnew Create the new component
DCold Delete the old component
FCold Finish the old component
ICnew Install the new component

Continued on next page
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primitive description
IPold Intercept packets directed to all inports of the affected compo-

nent
IP client

old Intercept packets directed to every old client process that the
affected component encapsulates

IP server
old Intercept packets directed to every old server process that the

affected component encapsulates
ISSold Impose a safe state over the old component
ISSclient

old Impose a safe state over all client processes that the affected
component encapsulates

ISSserver
old Impose a safe state over all server processes that the affected

component encapsulates
LIint

new Bind the new component’s service-internal inports (LI stands for
“link inports”)

LIold−new Unbind the old component’s inports and simultaneously bind
those of the new component

LIext
old−new Unbind the old component’s service-external inports and simul-

taneously bind those of the new component

LI
′ext
old−new Unbind the old component’s service-external inports and simul-

taneously bind those of the new marking components
LIint

old−new Unbind the old component’s service-internal inports and simul-
taneously bind those of the new component

LOnew Bind all outports of the new component (LO stands for “link
outports”)

LOext
new Bind the new component’s service-external outports

LOint
new Bind the new component’s service-internal outports

RCold Remove the old component
RPnew Release packets directed to the new component
RP client

new Release packets directed to the new client processes
RP server

new Release packets directed to the new server processes
RPDmark

new Remove the employed marking support (RPD stands for “remove
packet-distinguishing support”)

RPD
disp
old−new Remove the employed dispatching support

UIint
old Unbind the old component’s service-internal inports (UI stands

for “unlink inports”)
UOold Unbind all outports of the old component (UO stands for “unlink

outports”)
UOext

old Unbind the old component’s service-external outports
UOint

old Unbind the old component’s service-internal outports
Table A.1: An overview of all NeCoMan’s reconfiguration actions.



Appendix B

Replacement of
retransmission component

In this appendix, we exemplify NeCoMan’s reconfiguration algorithm for carrying
out local reconfigurations of distributed services with the dynamic replacement of
Rold by Rnew. Figure 3.2 sketches the protocol stack of the affected node before and
after this replacement has occurred. In addition, the Petri net in Figure B.1 models
how NeCoMan coordinates this reconfiguration. Note that this model originates
from NeCoMan’s local reconfiguration algorithm, and is tailored to the character-
istics of the retransmission component. As we further explain in the remainder of
this section, this tailoring involves discarding a number of transitions that become
redundant when replacing Rold.

Besides illustrating this reconfiguration algorithm with a concrete example, we
also demonstrate that NeCoMan implements each reconfiguration action by only
invoking the eight node operations listed in Section 3.3.1. This indicates that
NeCoMan is prepared to coordinate the recomposition of various component-based,
flow-oriented protocol stack architectures, given that these architectures provide the
reconfiguration support needed to assist NeCoMan in carrying out reconfigurations.

Finally, once again we use black bold components and connections to graphically
symbolize components and connections that are created after completing a recon-
figuration action. Grey bold components and connections, in contrast, represent
components and connections that are removed.

B.1 Installing new retransmission component

The replacement begins by installing the new retransmission component on the
affected node. This requires first loading Rnew into the node’s reconfiguration sup-
port. Next, NeCoMan instructs the affected node to connect the new retransmission
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Figure B.1: Implementation of the reconfiguration algorithm that NeCoMan uses
to replace Rold with Rnew

component into its protocol stack composition. Because the new retransmission
component should not be activated in this phase, the latter is limited to connect-
ing Rnew’s data-outport with the inport of the lower layer. Figure B.2 depicts the
composition of the affected node after installing Rnew. Besides, note that because
Rnew contains only a client process (the retransmission processes), there is no need
to execute LOext

new (see Figure B.1).

NeCoMan implements the installation of Rnew by invoking the “create” and
“link” operations that the underlying node’s reconfiguration support provides. To
illustrate this, Listing B.1 depicts how NeCoMan instructs the underlying node to
load and bind Rnew.

create ( component id="Rnew" , c lass name="NewRetrComp" ) ;
l ink ( source comp="Rnew" , s ou r c e po r t="data -outport" ,

dest comp="LowerLayer" , d e s t po r t="inport" ) ;

Listing B.1: NeCoMan instructing the node’s reconfiguration support to install
Rnew
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Figure B.2: Installation of Rnew
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Figure B.3: Finishing of Rold

B.2 Finishing old retransmission component

Next, Rold becomes finished. NeCoMan first instructs the affected node to intercept
packets that invoke Rold’s retransmission process. As a result, this node’s reconfig-
uration support intercepts all packets directed to Rold’s data-inport (as illustrated
in Figure B.3). Once this is completed, NeCoMan instructs the affected node to im-
pose a reconfiguration-safe state over Rold’s retransmission process. Presume that
this involves first monitoring Rold’s retransmission queue until it is empty. After
that, the node’s reconfiguration support stops Rold’s retransmission timer, captures
the last sequence number that Rold has attached to an outgoing packet, and rein-
states this information in Rnew. Listing B.2 illustrates how NeCoMan instructs the
node’s reconfiguration support to accomplish this. Besides, note that because Rold

encapsulates only a client process, reconfiguration actions IP server
old and ISSserver

old

become redundant and therefore can be discarded.

intercept packets ( component id="Rold" , p r o c e s s i d="retransmit" ) ;
impose safe state ( component id="Rold" , p r o c e s s i d="retransmit" ) ;

Listing B.2: NeCoMan instructing the node’s reconfiguration support to finish Rold

B.3 Activating new retransmission component

Next, Rnew can safely be activated. To achieve this, NeCoMan first instructs the
reconfiguration support of the affected node to relink all service-internal and service-
external inports. As illustrated in Figure B.4, this involves disconnecting Rold’s ack-
inport and data-inport from the outports of the upper layer and of the lower layer,
respectively. Next, these outports become reconnected to the ack-inport and data-
inport of Rnew. Once this is accomplished, NeCoMan instructs the affected node
to activate the new retransmission process. This results in starting this process’
retransmission timer. After that, Rnew is prepared to be brought in use. NeCoMan
then completes the activation phase by invoking the affected node to release all
intercepted packets (see Figure B.5). Listing B.3 illustrates the instructions that
NeCoMan uses to activate Rnew. In addition, note that because Rnew does not
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Figure B.5: Releasing
intercepted packets
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Figure B.6: Removal of
Rold

contain server processes either, reconfiguration actions AP server
new and RP server

new can
be discarded (as illustrated in Figure B.1).

activate processes ( component id="Rnew" , p r o c e s s i d="retransmit" ) ;
unlink ( source comp="LowerLayer" , s ou r c e po r t="outport" ,

dest comp="Rold" , d e s t po r t="ack -inport" ) ;
l ink ( source comp="LowerLayer" , s ou r c e po r t="outport" ,

dest comp="Rnew" , d e s t po r t="ack -inport" ) ;
unlink ( source comp="UpperLayer" , s ou r c e po r t="outport" ,

dest comp="Rold" , d e s t po r t="data -inport" ) ;
l ink ( source comp="UpperLayer" , s ou r c e po r t="outport" ,

dest comp="Rnew" , d e s t po r t="data -inport" ) ;
release packets ( component id="Rnew" , p r o c e s s i d="retransmit" ) ;

Listing B.3: NeCoMan instructing the node’s reconfiguration support to activate
Rnew

B.4 Removing old retransmission component

Finally, the old retransmission component becomes removed from the affected node,
as illustrated in Figure B.6. This involves first disconnecting Rold from the node’s
protocol stack composition by unlinking the outports of this component. Next,
NeCoMan instructs the node’s reconfiguration support to delete Rold. Because
Rold has already been finished, the removal of this component will not compromise
the correct network operation.

To remove Rold, NeCoMan invokes the underlying node’s reconfiguration sup-
port to disconnect and delete this component by using the “unlink” and “remove”
primitives, respectively. More in detail, Listing B.4 sketches how NeCoMan in-
structs the local removal of Rold. Finally, note that because Rold contains no server
processes, there is no need to execute UOext

new.
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unlink ( source comp="Rold" , s ou r c e po r t="data -outport" ,
dest comp="LowerLayer" , d e s t po r t="inport" ) ;

remove( component id="Rold" ) ;

Listing B.4: NeCoMan instructing the node’s reconfiguration support to remove
Rold
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Appendix C

Correctness of NeCoMan’s
algorithm for local
reconfiguration of distributed
services

This appendix demonstrates that NeCoMan’s algorithm for local reconfiguration of
distributed services meets all required reconfiguration conditions. These conditions
are listed in Table 3.3. Related to the algorithm’s Petri net model, each one of these
reconfiguration condition formalizes a pre-condition to fire a transition. Therefore,
to demonstrate that the presented algorithm conducts correct reconfigurations, we
check for every transition modelled in Figure 3.18 if all pre-conditions (that the
associated reconfiguration conditions impose) are met.

1. Create new service component. From Table 3.3 we conclude that no
pre-conditions must be fulfilled to safely execute CCnew. Consequently, there
is no need to coordinate firing the transition that models the execution of
CCnew.

2. Link new service-external and service-internal outports. The execu-
tion of LOext

new and LOint
new can only be initiated when CCnew is finished, as

dictated by reconfiguration condition (3.1). We conclude from Table 3.4 that
this condition is fulfilled as from reaching place p2. Because p2 is the input
place of LOext

new and the ancestor place of LOint
new, the algorithm meets this

reconfiguration condition.

3. Intercept packets directed to old client processes. Similar to the exe-
cution of CCnew, we conclude from Table 3.3 that no pre-condition must be

223



224
Correctness of NeCoMan’s algorithm for local reconfiguration of distributed

services

satisfied to correctly execute IP client
old .

4. Impose safe state over old client processes. As defined by reconfigura-
tion condition (3.2), NeCoMan can only instruct a node to carry out ISSclient

old

when IP client
old is completed. Table 3.4 indicates that this condition is met as

from reaching place p5. Because p5 is the input place of ISSclient
old , the algo-

rithm meets this reconfiguration condition.

5. Intercept packets directed to old server processes. Similar to the
execution of IP client

old , no pre-conditions must be satisfied either to correctly
execute IP server

old .

6. Impose safe state over old server processes. As reconfiguration con-
dition (3.3) dictates, the execution of ISSserver

old can only be started when
IP server

old has completed. This condition is met as from reaching place p7,
which is the input place of the transition that defines the execution of ISSserver

old .
The algorithm thus meets this reconfiguration condition as well.

7. Activate new server processes. As defined by reconfiguration condi-
tions (3.9) and (3.12), NeCoMan can only instruct the execution of AP server

new

when LOext
new, LOint

new, and ISSserver
old have completed. This is accomplished as

from reaching place p8, which is the input place of the transition that models
the execution of AP server

new .

8. Activate new client processes. According to reconfiguration conditions
(3.8) and (3.11), the execution of AP client

new can only be initiated safely when
both LOint

new and ISSclient
old are completed. This pre-condition is met as from

reaching place p6, which is an ancestor place of the transition that models
AP client

new .

9. (Re)link service-internal inports. The execution of LIint
old−new can only

be initiated safely when both CCnew, ISSclient
old , and ISSserver

old are completed,
as dictated by reconfiguration conditions (3.7) and (3.10). As we can deduce
from Table 3.4, this condition is met as from reaching place p8. Because p8 is
an ancestor place of the transition that models LIint

old−new, the algorithm does
not violate this pre-condition.

10. (Re)link service-external inports. According to reconfiguration condi-
tions (3.7) and (3.11), the execution of LIext

old−new can only be initiated safely

when both CCnew and ISSclient
old are completed. As we can deduce from Ta-

ble 3.4, this condition is fulfilled as from reaching place p6. Because this is the
ancestor place of LIext

old−new, the algorithm meets this pre-condition as well.

11. Release packets for new server processes. Reconfiguration conditions
(3.5) and (3.9) dictate that a node’s reconfiguration support can only be
invoked to initiate RP server

new once AP server
new , LIint

old−new, LOext
new, and LOint

new
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are completed on that node. This is met as from reaching place p11, which is
an ancestor place of the transition that models RP server

new . The algorithm thus
meets this requirement.

12. Release packets for new client processes. According to reconfigura-
tion conditions (3.4) and (3.8), the execution of RP client

new can only be started
when AP client

new , LIint
old−new, LIext

old−new, and LOint
new has completed. This pre-

condition is met as from reaching place p12, which is an ancestor place of the
transition that models RP client

new .

13. Unlink old service-internal outports. As defined by reconfiguration con-
dition (3.13), the execution of UOold

int should only be fired when both ISSclient
old

and ISSserver
old are completed. This pre-condition is met as from reaching

place p8, which is an ancestor place of the transition that models UOold
int. The

algorithm thus fulfills this pre-condition.

14. Unlink old service-external outports. Reconfiguration condition (3.14)
dictates that UOold

ext can only be initiated once ISSserver
old has completed. The

latter is accomplished as from reaching place p8. Because p8 is an ancestor
place of the transition that models the execution of UOold

ext, the algorithm
complies with this reconfiguration condition as well.

15. Delete old service component. Finally, reconfiguration condition (3.6)
dictates that a node’s reconfiguration support can only be invoked to initiate
DCold once UOext

old , UOint
old , LIext

old−new, and LIint
old−new are completed on that

node. This pre-condition is met as from reaching place p16. Because this
is the input place of the transition that models the execution of DCold, the
algorithm fulfills this requirement as well.

So, we conclude that the algorithm depicted in Figure 3.18 fulfills all required
reconfiguration conditions, and therefore yields correct reconfigurations.
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Appendix D

Affected reconfiguration
conditions when customizing
NeCoMan’s algorithms for
local reconfigurations

As explained in detail in Chapter 4, NeCoMan incorporates an extensive set of cus-
tomizations that apply to its local reconfiguration algorithms. These customizations
seek to optimize the reconfiguration scenario by exploiting both the characteristics of
the affected services and the reconfiguration semantics. Hence, each customization
affects some of the reconfiguration conditions that NeCoMan must fulfill to con-
duct a correct reconfiguration. This appendix lists the reconfiguration conditions
that are changed when applying customizations 4.4 to 4.7. Note that the effect of
customizations 4.2 and 4.3 has already been discussed in detail in Chapter 4.

We first focus on customization 4.4, which involves the use of active objects. To
be precise, Tables D.1 and D.2 list all reconfiguration conditions that are affected
when the client and server processes of the new component do not use active objects.
In addition, Table D.3 lists all reconfiguration conditions that are changed when
isolated network-service components are involved and the new service component
(again) does no employ active objects.

Next, we concentrate on customization 4.5. This customization involves omit-
ting some reconfiguration actions when the old and new components encapsulate
only client or server processes, instead of both. Table D.4 lists all reconfiguration
conditions that are changed when the affected components encapsulate only client
processes. Similarly, Table D.5 lists all reconfiguration conditions that are changed
when the affected components encapsulate only server processes.

After that, we focus on customization 4.6. This customization is targeted at
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Affected reconfiguration conditions when customizing NeCoMan’s algorithms for

local reconfigurations

affected
reconfig-
uration
condition

resulting
safety
condition

(3.4) RP client
new ←

LIint
old−new ∧ LIext

old−new

(3.8) RP client
new ← LOint

new

(3.11) LIext
old−new ← ISSclient

old

(4.1) AP server
new ← CCnew

(4.2) LIint
old−new ← AP server

new

∧LOint
new ∧ LOext

new

(4.3) LIext
old−new ← LOint

new∧

LIint
old−new

Table D.1: Customization of NeCo-
Man’s algorithm for local reconfigura-
tions that involve distributed services:
overview of all reconfiguration condi-
tions that become changed when the
new component’s client processes do not
use active objects.

affected
reconfig-
uration
condition

resulting
safety
condition

(3.5) RP server
new ← LIint

old−new

(3.9) RP server
new ← LOext

new ∧

LOint
new

(3.12) N/A

(4.1) AP client
new ← CCnew

(4.2) LIint
old−new ← AP client

new

∧LOint
new ∧ LOext

new

Table D.2: Customization of NeCo-
Man’s algorithm for local reconfigura-
tions that involve distributed services:
overview of all reconfiguration condi-
tions that become changed when the
new component’s server processes do not
use active objects.

omitting reconfiguration actions that involve service-internal inports and outports.
Hence, Table D.6 lists all reconfiguration conditions that are changed when NeCo-
Man manages a node with only client processes, and these processes communicate by
a unidirectional communication protocol. Besides, Table D.7 lists all reconfiguration
conditions that become affected when NeCoMan manages a node accommodating
only server processes, which communicate (also) by a unidirectional communication
protocol.

Finally, we concentrate on customization 4.7. This customization seeks to tailor
NeCoMan’s second local reconfiguration algorithm when services are to be added or
removed instead of being replaced. Table D.8 lists all reconfiguration conditions that
are affected in case of service addition. Similarly, Table D.9 lists all reconfiguration
conditions that are changed when a reconfiguration involves service removal.



229

affected
reconfig-
uration
condition

resulting
safety
condition

(3.17) RPnew ← LIold−new

(3.20) RPnew ← LOnew

(3.22) RPnew ← ISSold

(4.6) N/A

(4.7) LIold−new ← LOnew

Table D.3: Customization of NeCoMan’s algorithm for local reconfigurations that
involve isolated services: overview of the reconfiguration conditions that become
changed when the new component’s processes do not use active objects.
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Affected reconfiguration conditions when customizing NeCoMan’s algorithms for

local reconfigurations

affected
reconfig-
uration
condition

resulting
safety
condition

(3.1) LOint
new ← CCnew

(3.3) N/A

(3.5) N/A

(3.6) DCold ← UOint
old∧

LIext
old−new ∧ LIint

old−new

(3.9) N/A

(3.10) LIint
old−new ← ISSclient

old

(3.12) N/A

(3.13) UOint
old ← ISSclient

old

(3.14) N/A

(4.1) AP client
new ← CCnew

(4.2) LIint
old−new ←

AP client
new ∧ LOint

new

(4.5) N/A

(4.10) N/A

Table D.4: Customization of NeCo-
Man’s algorithm for local reconfigura-
tions that involve distributed services:
overview of all reconfiguration condi-
tions that become adapted when the old
and new component encapsulate only
client processes.

affected
reconfig-
uration
condition

resulting
safety
condition

(3.2) N/A

(3.4) N/A

(3.6) DCold ← UOint
old∧

UOext
old ∧ LIint

old−new

(3.7) LIint
old−new ← CCnew

(3.8) N/A

(3.10) LIint
old−new ← ISSserver

old

(3.11) N/A

(3.13) UOint
old ← ISSserver

old

(4.1) AP server
new ← CCnew

(4.2) LIint
old−new ← AP server

new

∧LOext
new ∧ LOint

new

(4.3) N/A

(4.4) N/A

(4.9) UOint
old ← LIint

old−new

Table D.5: Customization of NeCo-
Man’s algorithm for local reconfigura-
tions that involve distributed services:
overview of all reconfiguration condi-
tions that become adapted when the old
and new component encapsulate only
server processes.



231

affected
reconfig-
uration
condition

resulting
safety
condition

(3.1) LOint
new ← CCnew

(3.3) N/A

(3.5) N/A

(3.6) DCold ← UOint
old∧

LIext
old−new

(3.9) N/A

(3.10) N/A

(3.12) N/A

(3.13) UOint
old ← ISSclient

old

(3.14) N/A

(4.1) AP client
new ← CCnew

(4.2) N/A

(4.3) LIext
old−new ←

AP client
new ∧ LOint

new

(4.5) N/A

(4.10) N/A

Table D.6: Customization of NeCo-
Man’s algorithm for local reconfigura-
tions that involve distributed services:
overview of all reconfiguration condi-
tions that become adapted when the old
and new component encapsulate only
client processes and when these pro-
cesses employ a unidirectional commu-
nication protocol

affected
reconfig-
uration
condition

resulting
safety
condition

(3.2) N/A

(3.4) N/A

(3.6) DCold ← UOext
old∧

LIint
old−new

(3.7) LIint
old−new ← CCnew

(3.8) N/A

(3.10) LIint
old−new ← ISSserver

old

(3.11) N/A

(3.13) N/A

(4.1) AP server
new ← CCnew

(4.2) LIint
old−new ← AP server

new

∧LOext
new

(4.3) N/A

(4.4) N/A

(4.9) N/A

Table D.7: Customization of NeCo-
Man’s algorithm for local reconfigura-
tions that involve distributed services:
overview of all reconfiguration condi-
tions that become adapted when the old
and new component encapsulate only
server processes and when these pro-
cesses employ a unidirectional commu-
nication protocol
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Affected reconfiguration conditions when customizing NeCoMan’s algorithms for

local reconfigurations

affected
reconfig-
uration
condition

resulting
safety
condition

(3.16) N/A

(3.17) N/A

(3.18) N/A

(3.20) APnew ← CCnew

(3.21) N/A

(3.22) N/A

(3.23) N/A

(4.8) N/A

(4.11) N/A

Table D.8: Customization of NeCo-
Man’s algorithm for local reconfigu-
rations that involve isolated services:
overview of all reconfiguration condi-
tions that become changed in case of ser-
vice addition.

affected
reconfig-
uration
condition

resulting
safety
condition

(3.15) N/A

(3.17) RPnew ← LIold−new

(3.19) N/A

(3.20) N/A

(3.22) RPnew ← ISSold

(4.6) N/A

(4.7) N/A

Table D.9: Customization of NeCo-
Man’s algorithm for local reconfigu-
rations that involve isolated services:
overview of all reconfiguration condi-
tions that become changed in case of ser-
vice removal.



Appendix E

Effect of local customizations
on reconfiguration overhead

This appendix analyzes the effect on reconfiguration overhead that the first two cus-
tomizations presented in Chapter 4 bring about. Recall that these customizations
seek to optimize NeCoMan’s local reconfiguration algorithms by activating the new
service before the old one is finished, and by discarding the finishing actions. The
other customizations presented in Chapter 4 seek to tailor the implementation of
a reconfiguration algorithm by discarding those actions that are redundant for a
particular reconfiguration. The effect of these customizations on the overhead that
a reconfiguration causes, therefore, is rather straight forward. Hence, this appendix
focusses only on the effect of the first two customizations.

To evaluate the effect of these customizations, we compare the cost incurred
by NeCoMan’s local algorithms (depicted in Figures 3.18 and 3.22) with the cost
incurred when these customizations are applied. We evaluate this cost in terms of
(1) the communication disruption that these algorithms cause, as well as (2) the
reconfiguration time. The first metric quantifies the period of time in which the
affected node will be unable to process packets. This period must be as small as
possible, so as to minimize the impact of a dynamic reconfiguration on the network’s
quality attributes (which include availability, response-time, and throughput [59]).
The second metric quantifies the time that it takes to complete a reconfiguration.

Finally, note that the same reconfiguration is involved when comparing two
different algorithms. If this is not the case, a comparison of the cost incurred by
these two algorithms obviously is not representative.
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E.1 Activate before finishing

As discussed in Section 4.2, a first customization that applies to NeCoMan’s local
reconfiguration algorithms involves activating a new component before the old one
is finished. This customization seeks to reduce the communication disruption that
a reconfiguration causes.

E.1.1 Local reconfigurations of distributed services

To evaluate the effect of this customization one on the reconfiguration overhead
that NeCoMan’s first local reconfiguration algorithm causes, we compare the cost
incurred by the algorithm modelled in Figure 3.18 with the cost incurred by using
the algorithm depicted in Figure 4.2.

Communication disruption

When NeCoMan employs its first local reconfiguration algorithm, then communica-
tion continuity will be disrupted as from the moment that packets are intercepted
until these packets are released again. So, during reconfiguration a component’s
client processes are disrupted from the moment that NeCoMan executes IP client

old

until RP client
new is completed. We can infer from the model of NeCoMan’s first recon-

figuration algorithm (depicted in Figure 3.18) that this period of communication
disruption equals

∆basic1
disrupt(client) = t(IP client

old ) + t(IP server
old ) + t(ISSclient

old ) + t(ISSserver
old ) +

t(AP client
new ) + t(AP server

new ) + t(LIext
old−new) + t(LIint

old−new) +

t(RP client
new ) + t(RP server

new )

where t(X) denotes the time that it takes to complete the execution of reconfigura-
tion action X.

Besides, a component’s server processes are disrupted as from the moment that
NeCoMan executes IP server

old until RP server
new is completed. Again we can infer from

the model depicted in Figure 3.18 that this period of communication disruption
equals

∆basic1
disrupt(server) = t(IP server

old ) + t(ISSserver
old ) + t(AP client

new ) + t(AP server
new ) +

t(LIext
old−new) + t(LIint

old−new) + t(RP server
new )

When NeCoMan activates the new service component before finishing the old
one, however, IP client

old , IP server
old , RP client

new and RP server
new become discarded. Besides,

the execution of ISSclient
old and ISSserver

old will not affect service continuity because
the new service component is already taken into use. Since AP client

new and AP server
new

do not cause communication disruption either, only the execution of LIext
old−new

and LIint
old−new will affect service continuity. Hence, the period in which a client
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process becomes disrupted when NeCoMan activates the new network service before
finishing the old one equals

∆basic1+cust1
disrupt (client) = t(LIext

old−new) + t(LIint
old−new)

Because activating the new server processes does not involve the execution of
LIext

old−new, the period in which a server process becomes disrupted when the new
component is activated before finishing the old one equals

∆basic1+cust1
disrupt (server) = t(LIint

old−new)

So, the difference in communication disruption that both scenarios cause on the
affected client processes equals

∆basic1
disrupt(client) − ∆basic1+cust1

disrupt (client) = t(IP client
old ) + t(IP server

old ) +

t(ISSclient
old ) + t(ISSserver

old ) + t(AP client
new ) + t(AP server

new ) +

t(RP client
new ) + t(RP server

new )

Similarly, the difference in communication disruption that both scenarios cause
on the affected server processes equals

∆basic1
disrupt(server) − ∆basic1+cust1

disrupt (server) = t(IP server
old ) + t(ISSserver

old ) +

t(AP client
new ) + t(AP server

new ) + t(LIext
old−new) + t(RP server

new )

We conclude from these equations that the first local reconfiguration algorithm
indeed causes more communication disruption than when the new component is
activated before finishing the old one.

Reconfiguration time

From the model of NeCoMan’s first local reconfiguration algorithm (depicted in
Figure 3.18), we can infer that the time it takes to complete a basic reconfiguration
equals

∆basic1
reconf = t(CCnew) + t(LOext

new) + t(LOint
new) +

t(IP client
old ) + t(IP server

old ) + t(ISSclient
old ) + t(ISSserver

old ) +

t(AP client
new ) + t(AP server

new ) + t(LIext
old−new) + t(LIint

old−new) +

t(RP server
new ) + t(RP client

new ) + t(UOext
old ) + t(UOint

old) + t(DCold)

Besides, the time that it takes to complete the algorithm modelled in Figure 4.2
equals

∆basic1+cust1
reconf = t(CCnew) + t(LOext

new) + t(LOint
new) +

t(ISSclient
old ) + t(ISSserver

old ) + t(AP client
new ) + t(AP server

new ) +

t(LIext
old−new) + t(LIint

old−new) + t(UOext
old ) + t(UOint

old) + t(DCold)
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Comparing ∆basic1
reconf with ∆basic1+cust1

reconf then results in

∆basic1
reconf − ∆basic1+cust1

reconf = t(IP client
old ) + t(IP server

old ) + t(RP server
new ) + t(RP client

new )

From this, we conclude that NeCoMan takes more time to complete a recon-
figuration when using its first local reconfiguration algorithm than when the new
component is activated before the old one is finished.

E.1.2 Local reconfigurations of isolated services

To evaluate the effect of this customization on the reconfiguration overhead that
NeCoMan’s second local reconfiguration algorithm causes, we compare the cost
incurred by the algorithm modelled in Figure 3.22 with the cost incurred by using
the algorithm depicted in Figure 4.4.

Communication disruption

Similar as for NeCoMan’s first local reconfiguration algorithm, all affected processes
are disrupted as from the moment that NeCoMan executes IPold until RPnew is com-
pleted. From the model of NeCoMan’s second reconfiguration algorithm (depicted
in Figure 3.22), we can infer that this period of communication disruption equals

∆basic2
disrupt = t(IPold) + t(ISSold) + t(APnew) + t(LIold−new) + t(RPnew)

When the new composition is activated before finishing the old one, IPold and
RPnew become discarded. Besides, ISSold will be executed while the new com-
position is already activated, and APnew does not affect service continuity. So,
the period in which processes become disrupted when NeCoMan activates the new
network service before finishing the old one equals

∆basic2+cust1
disrupt = t(LIold−new)

So, the difference in communication disruption that both algorithms cause on
the affected processes equals

∆basic2
disrupt − ∆basic2+cust1

disrupt = t(IPold) + t(ISSold) + t(APnew) + t(RPnew)

From this, we conclude that a reconfiguration causes less communication dis-
ruption when a new component is already activated before finishing the old one.

Reconfiguration time

From the model of NeCoMan’s second local reconfiguration algorithm (depicted in
Figure 3.22), we can infer that the time it takes to complete this reconfiguration
equals

∆basic2
reconf = t(CCnew) + t(LOnew) + t(IPold) + t(ISSold) + t(APnew) +

t(LIold−new) + t(RPnew) + t(UOold) + t(DCold)
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Besides, the time it takes to complete the algorithm modelled in Figure 4.4
equals

∆basic2+cust1
reconf = t(CCnew) + t(LOnew) + t(ISSold) + t(APnew) +

t(LIold−new) + t(UOold) + t(DCold)

Comparing both algorithms results in

∆basic2
reconf − ∆basic2+cust1

reconf = t(IPold) + t(RPnew)

From this, we can conclude that it takes less time to complete a reconfiguration
when the new component is activated before finishing the old one.

E.2 No finishing

A second customization to optimize NeCoMan’s local reconfiguration algorithms
involves omitting all finishing actions. This customization has been discussed in
detail in Section 4.3.

E.2.1 Local reconfigurations of distributed services

To evaluate the effect of this customization on the reconfiguration overhead that
NeCoMan’s first local reconfiguration algorithm causes, we compare the cost in-
curred by the algorithm modelled in Figure 3.18 with the cost incurred by using
the algorithm depicted in Figure 4.6.

Communication disruption

When comparing NeCoMan’s first local reconfiguration algorithm (depicted in Fig-
ure 3.18) with the model illustrated in Figure 4.6, we can infer that

∆basic1
disrupt(client) − ∆basic1+cust2

disrupt (client) = t(IP client
old ) + t(IP server

old ) +

t(ISSclient
old ) + t(ISSserver

old ) + t(AP client
new ) + t(AP server

new ) +

t(RP client
new ) + t(RP server

new )

Similarly, the difference in communication disruption that both algorithms cause
on the affected server processes equals

∆basic1
disrupt(server) − ∆basic1+cust2

disrupt (server) = t(IP server
old ) + t(ISSserver

old ) +

t(AP client
new ) + t(AP server

new ) + t(LIext
old−new) + t(RP server

new )

So, we can conclude that a reconfiguration causes less communication disruption
when all finishing actions are omitted. Note, however, that this comparison does
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not take into account the effect of inconsistencies on the network performance in
general. When a recomposition involves components that belong to a multi-element
protocol booster, for instance, the network will operate with lower performance
until these inconsistencies are handled. In addition, when various packets get lost
during a reconfiguration, TCP reduces its congestion window. Again, this affects
the network’s performance. It is clear that these performance penalties must also be
taken into account when evaluating the benefit associated with omitting all finishing
actions.

Reconfiguration time

The time that it takes to complete the algorithm depicted in Figure 4.6 equals

∆basic1+cust2
reconf = t(CCnew) + t(LOext

new) + t(LOint
new) +

t(AP client
new ) + t(AP server

new ) + t(LIext
old−new) + t(LIint

old−new) +

t(UOext
old ) + t(UOint

old) + t(DCold)

Compare this with the time that it takes to complete a basic reconfiguration
results in

∆basic1
reconf − ∆basic1+cust2

reconf = t(IP client
old ) + t(IP server

old ) + t(ISSclient
old ) +

t(ISSserver
old ) + t(RP server

new ) + t(RP client
new )

From this, we can conclude that a reconfiguration takes less time to complete
when all finishing actions are omitted.

E.2.2 Local reconfigurations of isolated services

To evaluate the effect of this customization on the reconfiguration overhead that
NeCoMan’s second local reconfiguration algorithm causes, we compare the cost
incurred by the algorithm modelled in Figure 3.22 with the cost incurred by using
the algorithm depicted in Figure 4.8.

Communication disruption

If we compare the communication disruption that NeCoMan’s second local recon-
figuration algorithm causes with the communication disruption that the algorithm
depicted in Figure 4.8 brings about, then we can infer that

∆basic2
disrupt − ∆basic2+cust2

disrupt = t(IPold) + t(ISSold) + t(APnew) + t(RPnew)

From this, we can conclude that also for NeCoMan’s second reconfiguration
algorithm communication disruption becomes reduced when all finishing actions
are omitted. Again, this evaluation does not take into account the effect of packet
loss on the network performance in general.



E.2 No finishing 239

Reconfiguration time

The time it takes for the algorithm depicted in Figure 4.8 to complete a reconfigu-
ration equals

∆basic2+cust2
reconf = t(CCnew) + t(LOnew) + t(APnew) +

t(LIold−new) + t(UOold) + t(DCold)

Comparing this with the time that it takes for NeCoMan’s second local algorithm
to complete results in

∆basic2
reconf − ∆basic2+cust2

reconf = t(IPold) + t(ISSold) + t(RPnew)

From this, we can conclude that also for the seconding local algorithm it takes
less time to complete a reconfiguration when all finishing actions are omitted.
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Appendix F

Customization procedure for
local reconfigurations

This appendix briefly sketches in what order NeCoMan applies the customizations
presented in Chapter 4 to its local reconfiguration algorithms. The flowchart de-
picted in Figure F.1 models how NeCoMan tailors its local reconfiguration algorithm
for distributed services. Next, Figure F.2 illustrates this customization procedure
when replacing Rold with Rnew. Finally, Figure F.3 models in what order NeCoMan
customizes its local reconfiguration algorithm for isolated services. Note that the
decision symbols represent checking the service characteristics and reconfiguration
semantics that must be fulfilled to safely apply a specific customization. These
service characteristics and reconfiguration semantics are listed in Table F.1.
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service characteristics
A the affected components belong to a distributed network service
B the affected components encapsulate an isolated network service
C the old components are stateless
D the new components restore from or tolerate inconsistent execution states
E the new components are able to continue processing all ongoing protocol-

transactions
F the new client processes do not employ active objects
G the new server processes do not employ active objects
H the processes of the new isolated component do not employ active objects
I the old and new components encapsulate only client processes
J the old and new components encapsulate only server processes
K the old and new components encapsulate both client and server processes
L the old and new components communicate by a unidirectional communica-

tion protocol

reconfiguration semantics
M the network tolerates packet re-ordering
N the affected components operate in a best-effort network
O the network restores from or tolerates inconsistent execution states
P service addition
Q service replacement
R service removal

Table F.1: The service characteristics and reconfiguration semantics that NeCo-
Man uses to identify which customizations it can apply to its local reconfiguration
algorithms. These properties result from the network administrator answering the
questions listed in Tables 4.5 and 4.6.
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Figure F.1: Procedure to customize the first local reconfiguration algorithm based
on the service characteristics and reconfiguration semantics listed in Table F.1.
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Figure F.2: Customization procedure when replacing Rold with Rnew.
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Figure F.3: Procedure to customize the second local reconfiguration algorithm based
on the service characteristics and reconfiguration semantics listed in Table F.1.
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Appendix G

Replacement of reliability
service

In this appendix, we exemplify NeCoMan’s algorithm for synchronized distributed
reconfiguration with the dynamic replacement of a reliability service by a new ver-
sion. Figure G.1 sketches the protocol stack composition of two nodes hosting the
original reliability service (Figure G.1(a)), and the composition of these nodes after
completing the replacement (Figure G.1(b)). Rold and Rnew again represent the
old and new retransmission components, while Aold and Anew correspond to the
old and new acknowledgement components.

The Petri net in Figure G.2 models how NeCoMan coordinates the replacement
of this reliability service. This model originates from NeCoMan’s synchronized
distributed reconfiguration algorithm, and is tailored to the characteristics of the
reliability service. As we further explain in the remainder of this section, this
involves discarding a number of transitions that become redundant when replacing
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(a) Original composition
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(b) Replacement completed

Figure G.1: Synchronized distributed reconfiguration: protocol stack composition
of two nodes hosting a reliability service, both before and after conducting the
reconfiguration scenario.
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a reliability service.

G.1 Installing new reliability service

The replacement begins by installing Rnew and Anew on the sending and receiving
node, respectively. NeCoMan first instructs these nodes’ reconfiguration support
to load Rnew and Anew. Next, NeCoMan invokes both nodes to connect Rnew

and Anew into their protocol stack composition. Because the new reliability ser-
vice should not be activated in this phase, the latter is limited to binding Rnew’s
data-outport, Anew’s data-outport, and Anew’s ack-outport. We illustrate the com-
position of both nodes after installing the new components in Figure G.3.

Besides, note that because Rnew provides only service-internal outport, the exe-
cution of LOext

new on the sending node becomes redundant and can be discarded (as
illustrated in Figure G.2). Component Anew, in contrast, exposes service-external
as well as service-internal outports. Hence, on the receiving node both LOext

new and
LOint

new must be executed.

G.2 Finishing old reliability service

Next, the old reliability service becomes finished. This involves driving only Rold to
a quiescent state. Once this is accomplished, Aold will have reached a reconfiguration-
safe state as well without additional intervention. To demonstrate this, notice that

• only packets directed to the old retransmission process (being the client pro-
cess of the old reliability service) must be intercepted for both Rold and Aold

to reach a safe state, and that

• both the old retransmission and acknowledgment process are in a mutually
consistent execution state once Rold’s retransmission queue is empty, which
indicates that all transmitted data packets have arrived correctly.

So, to finish the old reliability service, NeCoMan first instructs the sending node
to intercept packets that invoke Rold’s retransmission process. As a result, this
node’s reconfiguration support holds up all packets that are directed to Rold’s data-
inport (as illustrated in Figure G.4). Once this is completed, NeCoMan instructs
the sending node to impose a safe state over Rold’s retransmission process. Similar
to a local reconfiguration, the associated reconfiguration support then monitors
Rold’s retransmission queue until it is empty – that is, to observe when all ongoing
protocol-transactions complete. Next, Rold’s retransmission timer is stopped as
well. After that, both Rold and Aold are both quiescent and thus can safely be
removed.
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Figure G.2: Implementation of the distributed reconfiguration algorithm that NeCo-
Man uses to replace a reliability service
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Figure G.3: Installation of new reliabil-
ity components
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Figure G.4: Finishing old reliability
components
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Figure G.5: Binding inports of new re-
liability components
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Figure G.6: Releasing intercepted pack-
ets

Note that because Rold encapsulates only a client process, reconfigurations ac-
tions IP server

old and ISSserver
old become redundant and can be discarded. Besides, be-

cause Aold is in a reconfiguration-safe state once Rold is quiescent, on the receiving
node no finishing operations must be executed either (as illustrated in Figure G.2)

G.3 Activating new reliability service

As soon as Rold is finished, NeCoMan activates the new reliability service. This
involves instructing the affected nodes to bind the inports of Rnew and Anew, to
start Rnew’s timer, and to resume all intercepted packets

Binding the inports of Rnew and Anew is similar to a local reconfiguration. For
the sending node, this involves first disconnecting Rold’s ack-inport and data-inport
from the outports of the upper and lower layer, and then reconnecting these outports
to the ack-inport and data-inport of Rnew. On the receiving node, the outport of
the lower layer becomes disconnected from Aold’s data-inport, and reconnected to
the data-inport of Anew. This is illustrated in Figure G.5.

Once the inport of Anew is bound, NeCoMan sends a synchronization message
from the receiving node towards the sending node. Once (1) this message has
arrived, (2) the inports of Rnew are bound, and (3) Rnew’s retransmission timer is
started, then NeCoMan instructs the sending node to release all intercepted packets.
The latter is illustrated in Figure G.6. At this point in the reconfiguration scenario,
the new reliability service processes all packets in transit.
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Figure G.7: Removal of old reliability components

Again some actions of NeCoMan’s synchronized distributed reconfiguration al-
gorithm can be discarded when replacing the reliability service. On the sending
node, for instance, the execution of AP server

new is redundant and thus must not be
executed. On the receiving node, activating Anew involves only binding this com-
ponent’s inports. Hence, all other reconfiguration actions to activate a new service
component can be discarded as well (as illustrated in Figure G.2).

G.4 Removing old reliability service

Finally, NeCoMan removes Rold and Aold from both nodes (as illustrated in Fig-
ure G.7). This involves first disconnecting Rold and Aold from other stack compo-
nents by unlinking their outports. Next, NeCoMan instructs both nodes to delete
Rold and Aold. Since the old reliability service has already been finished, the re-
moval of these components will not compromise the correct network operation.
Besides, note that because Rold provides only service-internal outport, the execu-
tion of UOext

new on the sending node becomes redundant and can be discarded (as
illustrated in Figure G.2).
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Appendix H

Additional distributed
reconfigurations that involve
the reliability service

In addition to Appendix G, we sketch a number of distributed reconfigurations
that involve the reliability service. A first reconfiguration includes replacing the
reliability service, in which the new service becomes activated before driving the old
one to a quiescent execution state. Figure H.1 sketches this reconfiguration scenario.
Besides, Figure H.2 depicts the Petri net model of the customized algorithm that
NeCoMan uses to accomplish this replacement.

After that, we illustrate how NeCoMan adds a reliability service to two (oper-
ating) programmable nodes. Figure H.3 first sketches this reconfiguration scenario
when quiescence must be reached before activating the new reliability service. In
addition, Figure H.4 depicts the customized algorithm that NeCoMan uses to ex-
ecute this dynamic addition. Next, Figure H.5 sketches all stages that NeCoMan
passes through when the new reliability service can be activated before quiescence
is reached. Furthermore, Figure H.6 depicts the Petri net model of the customized
algorithm that NeCoMan uses to accomplish this addition.

Finally, we also illustrate how NeCoMan dynamically removes a reliability ser-
vice from two (operating) programmable nodes. We first focus on the scenario in
which the old reliability service becomes finished before being bypassed. This sce-
nario and the algorithm that NeCoMan uses to carry out this reconfiguration are
illustrated in Figures H.7 and H.8, respectively. After that, Figure H.9 sketches all
stages that NeCoMan passes through when the old service becomes bypassed before
quiescence is reached. The customized algorithm that NeCoMan uses to conduct
this removal is depicted in Figure H.10.
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(a) Installation of new reliability compo-
nents
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(b) Adding marking and dispatching sup-
port
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(c) Activating the new reliability service
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(d) Removing dispatching support
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(e) Removing marking support
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(f) Deleting old reliability components

Figure H.1: Replacement of old reliability service with new one: scenario which
involves activation before finishing
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Figure H.2: Replacement of old reliability service with new one: customized recon-
figuration algorithm which involves activation before finishing
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(a) Installation of new reliability compo-
nents
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(b) Bringing about quiescence
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(c) Binding inports
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(d) Releasing intercepted packets

Figure H.3: Addition of new reliability service: scenario which involves reaching
quiescence before activation
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Figure H.4: Addition of new reliability service: customized reconfiguration algo-
rithm which involves reaching quiescence before activation
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(c) Activating the new reliability service

���� ����

�����	
���� �����	
����



���	
���� 

���	
����

����
��

�� ��

(d) Removing dispatching support
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(e) Removing marking support

Figure H.5: Addition of new reliability service: scenario which involves activation
before reaching quiescence
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Figure H.6: Addition of new reliability service: customized reconfiguration algo-
rithm which involves activation before reaching quiescence
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(d) Removal of old reliability components

Figure H.7: Removal of old reliability service: scenario which involves finishing
before activation
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Figure H.8: Removal of old reliability service: customized reconfiguration algorithm
which involves reaching quiescence before activation
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(e) Deleting old reliability components

Figure H.9: Removal of old reliability service: activation before finishing
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Figure H.10: Removal of old reliability service: customized reconfiguration algo-
rithm which involves activation before reaching quiescence
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Appendix I

Correctness of NeCoMan’s
algorithm for conducting
synchronized distributed
reconfigurations

This appendix demonstrates that NeCoMan’s algorithm for conducting synchro-
nized distributed reconfigurations meets all required reconfiguration conditions.
These conditions are listed in Table 5.1. Related to the algorithm’s Petri net
model, each one of these reconfiguration condition formalizes a pre-condition to
fire a transition. Therefore, to demonstrate that the presented algorithm conducts
correct reconfigurations, we check for every transition modelled in Figure 5.13 if all
pre-conditions (that the associated reconfiguration conditions impose) are met.

1. Create new service component. No pre-conditions must be fulfilled to
safely execute CCnew(nodex) (see Table 5.1). Consequently, there is no need
to coordinate firing the transition that models the execution of CCnew.

2. Link new service-external and service-internal outports. As recon-
figuration condition (5.1) dictates, the execution of LOext

new and LOint
new can

only be started on node x when CCnew(nodex) has completed. We conclude
from Table 5.2 that this is fulfilled as from reaching places p2 and p17. These
places are the input places of LOext

new(nodea) and LOext
new(nodeb), as well as

the ancestor places of LOint
new(nodea) and LOint

new(nodeb). The algorithm thus
meets reconfiguration condition (5.1).

3. Intercept packets directed to old client processes. Similar as for the
execution of CCnew(nodex), we conclude from Table 5.1 that no pre-condition
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reconfigurations

must be fulfilled before executing IP client
old (nodex).

4. Impose safe state over old client processes. According to reconfig-
uration condition (5.2), NeCoMan can only instruct a node x to execute
ISSclient

old (nodex) once IP client
old (nodex) has completed. The latter is met as

from reaching places p5 and p20, which are the input places of ISSclient
old (nodea)

and ISSclient
old (nodeb), respectively. So, the algorithm satisfies reconfiguration

condition (5.2).

5. Impose safe state over old server processes. Reconfiguration condi-
tion (5.3) imposes to only initiate the execution of ISSserver

old (nodex) once
ISSclient

old (nodey) is completed on every node y 6= x. We conclude from Ta-
ble 5.2 that this condition is fulfilled as from reaching places p6 and p21

– that is, after receiving synchronization message A. Because p6 and p21 are
the input places of ISSserver

old (nodea) and ISSserver
old (nodeb), respectively, the

algorithm meets reconfiguration condition (5.3).

6. Activate new server processes. According to reconfiguration conditions
(5.7) and (5.12), NeCoMan can only execute AP server

new on node x once CCnew

and ISSserver
old have completed on that node x. Table 5.2 indicates that this

pre-condition is met as from reaching places p7 and p22, which are the input
places of AP server

new (nodea) and AP server
new (nodeb), respectively.

7. Activate new client processes. As defined by reconfiguration conditions
(5.7) and (5.11), the execution of AP client

new can only be initiated on node x
when CCnew(nodex) and ISSclient

old (nodex) have completed. This condition
is met as from reaching places p6 and p21. Because these are the ancestor
places of AP client

new (nodea) and AP client
new (nodeb), the algorithm meets this pre-

condition as well.

8. (Re)link service-internal inports. The execution of LIint
old−new(nodex)

can only be started once CCnew, ISSclient
old , and ISSserver

old are completed
on node x, as imposed by reconfiguration conditions (5.6) an (5.9). This
is accomplished as from reaching places p7 and p22, which are the ancestor
places of LIint

old−new(nodea) and LIint
old−new(nodeb), respectively. Hence, the

algorithm does not violate these reconfiguration conditions.

9. (Re)link service-external inports. Reconfiguration conditions (5.6) and
(5.10) dictate that LIext

old−new(nodex) can only be executed when CCnew(nodex)

and ISSclient
old (nodex) are completed. This pre-condition is met as from reach-

ing places p6 and p21. Since p6 and p21 are ancestor places of the transitions
that model LIext

old−new(nodea) and LIext
old−new(nodeb), respectively, the algo-

rithm does not violate reconfiguration conditions (5.6) and (5.10) either.
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10. Release packets for new client processes. According to reconfiguration
conditions (5.4) and (5.8), NeCoMan can only safely initiate the execution of
RP client

new on node x when

(a) LOint
new, LIint

old−new, LIext
old−new, and AP client

new are completed on that node x,
and

(b) LOint
new, LOext

new, LIint
old−new, and AP server

new are executed as well on every
other node y 6= x.

Both conditions are met as from reaching places p11 and p26 – that is, after
receiving synchronization message B. Because these places are the input places
of RP client

new (nodea) and RP client
new (nodeb), the algorithm fulfills reconfiguration

conditions (5.4) and (5.8) as well.

11. Unlink old service-internal outports. As reconfiguration condition (5.13)
defines, the execution of UOint

old can only be started on node x when both
ISSclient

old (nodex) and ISSserver
old (nodex) are completed. This pre-condition is

met as from reaching places p7 and p22. Because p7 and p22 are ancestor places
of the transitions that model UOint

old(nodea) and UOint
old(nodeb), reconfiguration

condition (5.13) is fulfilled as well.

12. Unlink old service-external outports. Reconfiguration condition (5.14)
imposes to only execute UOext

old (nodex) once ISSserver
old (nodex) has completed.

The latter is accomplished as from reaching places p7 and p22. Since both
places are ancestor places of the transitions that model UOext

old (nodea) and
UOext

old (nodeb), the algorithm does not violate this condition either.

13. Delete old service component. Finally, reconfiguration condition (5.5)
dictates to only execute DCold on node x once UOext

old , UOint
old , LIext

old−new, and
LIint

old−new are completed on that node. This pre-condition is fulfilled as from
reaching places p14 and p29. Because these places are the input places of the
transitions that model DCold(nodea) and DCold(nodeb), the algorithm fulfills
reconfiguration condition (5.5) as well.

So, we conclude that the algorithm depicted in Figure 5.13 fulfills all required
reconfiguration conditions, and therefore yields correct reconfigurations.
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Appendix J

Affected reconfiguration
conditions when customizing
NeCoMan’s algorithms for
distributed reconfigurations

This appendix lists the reconfiguration conditions that are changed when applying
customizations 6.5 to 6.9 to both basic distributed reconfiguration scenarios. Note
that the effect of customizations 6.2 to 6.4 has already been discussed in detail in
Chapter 6.

We first focus on customization 6.5. This customization involves omitting the
execution of ISSserver

old . To illustrate the impact of this customization, Table J.1
lists all reconfiguration conditions that are changed when only a service’s client
processes must be finished to reach quiescence.

Next, we concentrate on customization 6.6, which involves the use of active
objects. Tables J.2 and J.3 list all reconfiguration conditions related to NeCoMan’s
algorithm for synchronized distributed reconfiguration (as well as to the algorithms
resulting from applying customizations 6.3 or 6.4 to this algorithm) that are changed
when the new client and/or server processes do not employ active objects.

After that, we focus on customization 6.7. This customization involves omitting
some reconfiguration actions when the old and new components encapsulate only
client or server processes, instead of both. Table J.4 lists all reconfiguration con-
ditions that are changed when the old and new component on node x encapsulate
client processes only. Similarly, Table J.5 lists all reconfiguration conditions that
are changed when the affected components encapsulate only server processes.

Next, we concentrate on customization 6.8. This customization is targeted at
omitting reconfiguration actions that involve service-internal inports and outports.
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distributed reconfigurations

affected
reconfig-
uration
condition

resulting
safety
condition

(5.3) N/A

(5.9) ∀nodex : [LIint
old−new(nodex) ← ∀nodey : ISSclient

old (nodey)]

(5.12) N/A

(5.13) ∀nodex : [UOint
old(nodex) ← ∀nodey : ISSclient

old (nodey)]

(5.14) ∀nodex : [UOext
old (nodex) ← ∀nodey 6= nodex : ISSclient

old (nodey)]

(6.7)
∀nodex : [RPDmark

new (nodex) ∧ RPD
disp
old−new(nodex) ←

∀nodey : ISSclient
old (nodey)]

Table J.1: Customization of NeCoMan’s algorithm for synchronized distributed
reconfiguration: overview of all reconfiguration conditions that become adapted
when the old server processes do not have to be finished.

To illustrate the effect of this customization on synchronized distributed reconfigu-
rations, Tables J.6 to J.11 list all reconfiguration conditions that this customization
affects. In addition, Tables J.12 to J.15 list all reconfiguration conditions that
NeCoMan must fulfill when replacing a unidirectional service with a bidirectional
one, and vice versa, without finishing the old service.

Finally, we focus on customization 6.9, which seeks to tailor a reconfiguration to
add or remove distributed network services instead of replacing them. Tables J.16
and J.17 list all reconfiguration conditions (related to the algorithm for synchro-
nized distributed reconfiguration and the algorithms that result from applying cus-
tomizations 6.3 or 6.4) that are changed in case of service addition and removal,
respectively. Besides, Tables J.18 and J.19 list all reconfiguration conditions that
are changed when NeCoMan conducts isolated distributed reconfigurations instead.
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affected
reconfig-
uration
condition

resulting
safety
condition

(5.4)
∀nodex : [RP client

new (nodex) ←
LIint

old−new(nodex) ∧ LIext
old−new(nodex)∧

∀nodey 6= nodex : [LIint
old−new(nodey)∧AP server

new (nodey)]]

(5.7) ∀nodex : [AP server
new (nodex) ← CCnew(nodex)]

(5.11) N/A

(6.2)
∀nodex : [LIext

old−new(nodex) ←
∀nodey 6= nodex : AP server

new (nodey)]

(6.8)
∀nodex : [LIint

old−new(nodex) ← LOext
new(nodex)∧

LOint
new(nodex) ∧ AP server

new (nodex)]

Table J.2: Customization of NeCoMan’s algorithm for synchronized distributed
reconfiguration: overview of all reconfiguration conditions that become changed
when the new components’ client processes do not use active objects.

affected
reconfig-
uration
condition

resulting
safety
condition

(5.4)
∀nodex : [RP client

new (nodex) ←
LIint

old−new(nodex) ∧ LIext
old−new(nodex)∧

AP client
new (nodex) ∧ ∀nodey 6= nodex : LIint

old−new(nodey)]

(5.7) ∀nodex : [AP client
new (nodex) ← CCnew(nodex)]

(5.12) N/A

(6.2) ∀nodex : [LIext
old−new(nodex) ← AP client

new (nodex)]

(6.8)
∀nodex : [LIint

old−new(nodex) ← LOext
new(nodex)∧

LOint
new(nodex) ∧ AP client

new (nodex)]

Table J.3: Customization of NeCoMan’s algorithm for synchronized distributed
reconfiguration: overview of all reconfiguration conditions that become changed
when the new components’ server processes do not use active objects.
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Affected reconfiguration conditions when customizing NeCoMan’s algorithms for

distributed reconfigurations

affected
reconfig-
uration
condition

resulting
safety
condition

(5.1) ∀nodex : [LOint
new(nodex) ← CCnew(nodex)]

(5.3) N/A

(5.5)
∀nodex : [DCold(nodex) ← UOint

old(nodex)∧
LIext

old−new(nodex) ∧ LIint
old−new(nodex)]

(5.7) ∀nodex : [AP client
new (nodex) ← CCnew(nodex)]

(5.9) ∀nodex : [LIint
old−new(nodex) ← ISSclient

old (nodex)]

(5.12) N/A

(5.13) ∀nodex : [UOint
old(nodex) ← ISSclient

old (nodex)]

(5.14) N/A

(6.1)
∀nodex : [APDmark

new (nodex) ∧ APD
disp
old−new(nodex) ←

CCnew(nodex)]

(6.4) ∀nodex : [DCold(nodex) ← LIext
old−new(nodex)∧

RPD
disp
old−new(nodex) ∧ UOint

old(nodex)]

(6.7)
∀nodex : [RPDmark

new (nodex) ∧ RPD
disp
old−new(nodex) ←

ISSclient
old (nodex)]

(6.8) ∀nodex : [LIint
old−new(nodex) ← LOint

new(nodex) ∧ AP client
new (nodex)]

(6.10) N/A

Table J.4: Customization of NeCoMan’s algorithm for synchronized distributed
reconfiguration: overview of all reconfiguration conditions that become adapted
when the old and new component on node x encapsulate client processes only.
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affected
reconfig-
uration
condition

resulting
safety
condition

(5.2) N/A

(5.4) N/A

(5.5)
∀nodex : [DCold(nodex) ← UOext

old (nodex) ∧ UOint
old(nodex)∧

LIint
old−new(nodex)]

(5.6) ∀nodex : [LIint
old−new(nodex) ← CCnew(nodex)]

(5.7) ∀nodex : [AP server
new (nodex) ← CCnew(nodex)]

(5.8) N/A

(5.9) ∀nodex : [LIint
old−new(nodex) ← ISSserver

old (nodex)]

(5.10) N/A

(5.11) N/A

(5.13) ∀nodex : [UOint
old(nodex) ← ISSserver

old (nodex)]

(6.2) N/A

(6.4)
∀nodex : [DCold(nodex) ← UOext

old (nodex)∧

RPD
disp
old−new(nodex) ∧ UOint

old(nodex)]

(6.5) N/A

(6.6) N/A

(6.7)
∀nodex : [RPDmark

new (nodex) ∧ RPD
disp
old−new(nodex) ←

ISSserver
old (nodex)]

(6.8)
∀nodex : [LIint

old−new(nodex) ← LOext
new(nodex)∧

LOint
new(nodex) ∧ AP server

new (nodex)]

(6.9) N/A

(6.11) ∀nodex : [UOint
old(nodex) ← LIint

old−new(nodex)]

Table J.5: Customization of NeCoMan’s algorithm for synchronized distributed
reconfiguration: overview of all reconfiguration conditions that become adapted
when the old and new component on node x encapsulate server processes only.
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Affected reconfiguration conditions when customizing NeCoMan’s algorithms for

distributed reconfigurations

affected
reconfig-
uration
condition

resulting
safety
condition

(5.1) ∀nodex : [LOint
new(nodex) ← CCnew(nodex)]

(5.3) N/A

(5.4)
∀nodex : [RP client

new (nodex) ←
LIext

old−new(nodex) ∧ AP client
new (nodex)∧

∀nodey 6= nodex : [LIint
old−new(nodey)∧AP server

new (nodey)]]

(5.5) ∀nodex : [DCold(nodex) ← UOint
old(nodex) ∧ LIext

old−new(nodex)]

(5.6) ∀nodex : [LIext
old−new(nodex) ← CCnew(nodex)]

(5.7) ∀nodex : [AP client
new (nodex) ← CCnew(nodex)]

(5.8)
∀nodex : [RP client

new (nodex) ← LOint
new(nodex)∧

∀nodey 6= nodex : LOext
new(nodey)]

(5.9) N/A

(5.12) N/A

(5.13) ∀nodex : [UOint
old(nodex) ← ISSclient

old (nodex)]

(5.14) N/A

(6.1) ∀nodex : [APDmark
new (nodex) ← CCnew(nodex)]

(6.4) ∀nodex : [DCold(nodex) ← LIext
old−new(nodex) ∧ UOint

old(nodex)]

(6.5)
∀nodex : [LIext

old−new(nodex) ← APDmark
new (nodex)∧

∀nodey 6= nodex : [LOext
new(nodey)∧

APD
disp
old−new(nodey)]]

(6.7) ∀nodex : [RPDmark
new (nodex) ← ISSclient

old (nodex)]

(6.8) N/A

(6.9)
∀nodex : [LIext

old−new(nodex) ← LOint
new(nodex)∧

AP client
new (nodex) ∧ ∀nodey 6= nodex : LIint

old−new(nodey)]

(6.10) N/A

(6.11) ∀nodex : [UOint
old(nodex) ← LIext

old−new(nodex)]

Table J.6: Customization of NeCoMan’s algorithm for synchronized distributed
reconfiguration: overview of all reconfiguration conditions that become adapted
when the old and new components on node x encapsulate only client processes,
which employ unidirectional communication protocols.
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affected
reconfig-
uration
condition

resulting
safety
condition

(5.1) ∀nodex : [LOext
new(nodex) ← CCnew(nodex)]

(5.2) N/A

(5.4) N/A

(5.5) ∀nodex : [DCold(nodex) ← UOext
old (nodex) ∧ LIint

old−new(nodex)]

(5.6) ∀nodex : [LIint
old−new(nodex) ← CCnew(nodex)]

(5.7) ∀nodex : [AP server
new (nodex) ← CCnew(nodex)]

(5.8) N/A

(5.9) ∀nodex : [LIint
old−new(nodex) ← ISSserver

old (nodex)]

(5.10) N/A

(5.11) N/A

(5.13) N/A

(6.1) ∀nodex : [LOext
new(nodex)∧APD

disp
old−new(nodex) ← CCnew(nodex)]

(6.2) N/A

(6.3) N/A

(6.4) ∀nodex : [DCold(nodex) ← UOext
old (nodex) ∧ RPD

disp
old−new(nodex)]

(6.5) N/A

(6.6) N/A

(6.7) ∀nodex : [RPD
disp
old−new(nodex) ← ISSserver

old (nodex)]

(6.8) ∀nodex : [LIint
old−new(nodex) ← LOext

new(nodex) ∧ AP server
new (nodex)]

(6.9) N/A

(6.11) N/A

Table J.7: Customization of NeCoMan’s algorithm for synchronized distributed
reconfiguration: overview of all reconfiguration conditions that become adapted
when the old and new components on node x encapsulate only server processes,
which employ unidirectional communication protocols.
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Affected reconfiguration conditions when customizing NeCoMan’s algorithms for

distributed reconfigurations

affected
reconfig-
uration
condition

resulting
safety
condition

(5.1) ∀nodex : [LOint
new(nodex) ← CCnew(nodex)]

(5.3) N/A

(5.4)
∀nodex : [RP client

new (nodex) ←
LIext

old−new(nodex) ∧ AP client
new (nodex)∧

∀nodey 6= nodex : [LIint
old−new(nodey)∧AP server

new (nodey)]]

(5.5)
∀nodex : [DCold(nodex) ←

UOint
old(nodex) ∧ LIext

old−new(nodex) ∧ UIint
old (nodex)]

(5.6) ∀nodex : [LIext
old−new(nodex) ← CCnew(nodex)]

(5.7) ∀nodex : [AP client
new (nodex) ← CCnew(nodex)]

(5.8)
∀nodex : [RP client

new (nodex) ← LOint
new(nodex)∧

∀nodey 6= nodex : LOext
new(nodey)]

(5.9) ∀nodex : [UIint
old (nodex) ← ISSclient

old (nodex)]

(5.12) N/A

(5.13) ∀nodex : [UOint
old(nodex) ← ISSclient

old (nodex)]

(5.14) N/A

(6.1) ∀nodex : [APDmark
new (nodex) ← CCnew(nodex)]

(6.4)
∀nodex : [DCold(nodex) ←

LIext
old−new(nodex) ∧ UIint

old (nodex) ∧ UOint
old(nodex)]

(6.5)
∀nodex : [LIext

old−new(nodex) ← APDmark
new (nodex)∧

∀nodey 6= nodex : [LOext
new(nodey)∧

APD
disp
old−new(nodey)]]

(6.7) ∀nodex : [RPDmark
new (nodex) ∧ UIint

old (nodex) ← ISSclient
old (nodex)]

(6.8) N/A

(6.9)
∀nodex : [LIext

old−new(nodex) ← LOint
new(nodex)∧

AP client
new (nodex) ∧ ∀nodey 6= nodex : LIint

old−new(nodey)]

(6.10) N/A

(6.11) ∀nodex : [UOint
old(nodex) ← LIext

old−new(nodex)]

Table J.8: Customization of NeCoMan’s algorithm for synchronized distributed
reconfiguration: overview of all reconfiguration conditions that become adapted
when the old and new components on node x encapsulate only client processes, and
the new client processes communicate by a unidirectional communication protocol.
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affected
reconfig-
uration
condition

resulting
safety
condition

(5.1) ∀nodex : [LOext
new(nodex) ← CCnew(nodex)]

(5.2) N/A

(5.4) N/A

(5.5)
∀nodex : [DCold(nodex) ← UOext

old (nodex) ∧ UOnew
old (nodex)∧

LIint
old−new(nodex)]

(5.6) ∀nodex : [LIint
old−new(nodex) ← CCnew(nodex)]

(5.7) ∀nodex : [AP server
new (nodex) ← CCnew(nodex)]

(5.8) N/A

(5.9) ∀nodex : [LIint
old−new(nodex) ← ISSserver

old (nodex)]

(5.10) N/A

(5.11) N/A

(5.13) ∀nodex : [UOint
old(nodex) ← ISSserver

old (nodex)]

(6.1) ∀nodex : [LOext
new(nodex)∧APD

disp
old−new(nodex) ← CCnew(nodex)]

(6.2) N/A

(6.3) N/A

(6.8) ∀nodex : [LIint
old−new(nodex) ← LOext

new(nodex) ∧ AP server
new (nodex)]

(6.9) N/A

(6.10) ∀nodex : [UOext
old (nodex) ← LIint

old−new(nodex)]

(6.11) ∀nodex : [UOint
old(nodex) ← LIint

old−new(nodex)]

Table J.9: Customization of NeCoMan’s algorithm for synchronized distributed
reconfiguration: overview of all reconfiguration conditions that become adapted
when the old and new components on node x encapsulate only server processes, and
the new server processes communicate by a unidirectional communication protocol.
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Affected reconfiguration conditions when customizing NeCoMan’s algorithms for

distributed reconfigurations

affected
reconfig-
uration
condition

resulting
safety
condition

(5.1) ∀nodex : [LOint
new(nodex) ← CCnew(nodex)]

(5.3) N/A

(5.4)
∀nodex : [RP client

new (nodex) ← LIint
new(nodex)∧

LIext
old−new(nodex) ∧ AP client

new (nodex)∧
∀nodey 6= nodex : [LIint

old−new(nodey)∧AP server
new (nodey)]]

(5.5) ∀nodex : [DCold(nodex) ← UOint
old(nodex) ∧ LIext

old−new(nodex)]

(5.6) ∀nodex : [LIint
new(nodex) ∧ LIext

old−new(nodex) ← CCnew(nodex)]

(5.7) ∀nodex : [AP client
new (nodex) ← CCnew(nodex)]

(5.9) N/A

(5.12) N/A

(5.13) ∀nodex : [UOint
old(nodex) ← ISSclient

old (nodex)]

(5.14) N/A

(6.1) ∀nodex : [APDmark
new (nodex) ← CCnew(nodex)]

(6.4) ∀nodex : [DCold(nodex) ← LIext
old−new(nodex) ∧ UOint

old(nodex)]

(6.5)
∀nodex : [LIext

old−new(nodex) ← APDmark
new (nodex)∧

LIint
new(nodex) ∧ ∀nodey 6= nodex : [LOext

new(nodey)∧

LOint
new(nodey) ∧ APD

disp
old−new(nodey)]]

(6.7) ∀nodex : [RPDmark
new (nodex) ← ISSclient

old (nodex)]

(6.8)
∀nodex : [LIint

new(nodex) ←
LOint

new(nodex) ∧ AP client
new (nodex)]

(6.9)
∀nodex : [LIext

old−new(nodex) ← LOint
new(nodex)∧AP client

new (nodex)∧
LIint

new(nodex) ∧ ∀nodey 6= nodex : LIint
old−new(nodey)]

(6.10) N/A

(6.11) ∀nodex : [UOint
old(nodex) ← LIext

old−new(nodex)]

Table J.10: Customization of NeCoMan’s algorithm for synchronized distributed
reconfiguration: overview of all reconfiguration conditions that become adapted
when the old and new components on node x encapsulate only client processes, and
the old client processes communicate by a unidirectional communication protocol.
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affected
reconfig-
uration
condition

resulting
safety
condition

(5.2) N/A

(5.4) N/A

(5.5) ∀nodex : [DCold(nodex) ← UOext
old (nodex) ∧ LIint

old−new(nodex)]

(5.6) ∀nodex : [LIint
old−new(nodex) ← CCnew(nodex)]

(5.7) ∀nodex : [AP server
new (nodex) ← CCnew(nodex)]

(5.8) N/A

(5.9) ∀nodex : [LIint
old−new(nodex) ← ISSserver

old (nodex)]

(5.10) N/A

(5.11) N/A

(5.13) N/A

(6.1)
∀nodex : [LOext

new(nodex) ∧ LOint
new(nodex)∧

APD
disp
old−new(nodex) ← CCnew(nodex)]

(6.3) N/A

(6.4) ∀nodex : [DCold(nodex) ← UOext
old (nodex) ∧ RPD

disp
old−new(nodex)]

(6.5) N/A

(6.6) N/A

(6.7) ∀nodex : [RPD
disp
old−new(nodex) ← ISSserver

old (nodex)]

(6.8)
∀nodex : [LIint

old−new(nodex) ←
LOext

new(nodex) ∧ LOint
new(nodex) ∧ AP server

new (nodex)]

(6.9) N/A

(6.11) N/A

Table J.11: Customization of NeCoMan’s algorithm for synchronized distributed
reconfiguration: overview of all reconfiguration conditions that become adapted
when the old and new components on node x encapsulate only server processes, and
the old server processes communicate by a unidirectional communication protocol.
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Affected reconfiguration conditions when customizing NeCoMan’s algorithms for

distributed reconfigurations

reconfiguration condition
(3.1) LOint

new ← CCnew

(3.6) DCold ← UOint
old ∧ LIext

old−new ∧ UIint
old

(3.7) LIext
old−new ← CCnew

(4.3) LIext
old−new ← AP client

new ∧ LOint
new

(4.9) UOint
old ← UIint

old ∧ LIext
old−new

Table J.12: Customization of NeCoMan’s algorithm for independent distributed
reconfiguration: overview of all reconfiguration conditions that have to be fulfilled
when replacing bidirectional client processes with unidirectional ones without reach-
ing quiescence.

reconfiguration condition
(3.1) LOext

new ← CCnew

(3.6) DCold ← UOext
old ∧ UOint

old ∧ LIint
old−new

(3.7) LIint
old−new ← CCnew

(4.2) LIint
old−new ← AP server

new ∧ LOext
new

(4.9) UOint
old ← LIint

old−new

(4.10) UOext
old ← LIint

old−new

Table J.13: Customization of NeCoMan’s algorithm for independent distributed
reconfiguration: overview of all reconfiguration conditions that have to be fulfilled
when replacing bidirectional server processes with unidirectional ones without reach-
ing quiescence.

reconfiguration condition
(3.1) LOint

new ← CCnew

(3.6) DCold ← UOint
old ∧ LIext

old−new

(3.7) LIext
old−new ∧ LIint

new ← CCnew

(4.2) LIint
new ← AP client

new ∧ LOint
new

(4.3) LIext
old−new ← AP client

new ∧ LOint
new ∧ LIint

new

(4.9) UOint
old ← LIext

old−new

Table J.14: Customization of NeCoMan’s algorithm for independent distributed
reconfiguration: overview of all reconfiguration conditions that have to be fulfilled
when replacing unidirectional client processes with bidirectional ones without reach-
ing quiescence.
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reconfiguration condition
(3.1) LOext

new ∧ LOint
new ← CCnew

(3.6) DCold ← UOext
old ∧ LIint

old−new

(3.7) LIint
old−new ← CCnew

(4.2) LIint
old−new ← AP server

new ∧ LOext
new ∧ LOint

new

(4.10) UOext
old ← LIint

old−new

Table J.15: Customization of NeCoMan’s algorithm for independent distributed
reconfiguration: overview of all reconfiguration conditions that have to be fulfilled
when replacing unidirectional server processes with bidirectional ones without reach-
ing quiescence.

affected
reconfig-
uration
condition

resulting
safety
condition

(5.2) N/A

(5.3) ∀nodex : [ISSserver
old (nodex) ← ∀nodey 6= nodex : IP client

old (nodey)]

(5.5) N/A

(5.9) ∀nodex : [LIint
old−new(nodex) ← ISSserver

old (nodex)]

(5.10) ∀nodex : [LIext
old−new(nodex) ← IP client

old (nodex)]

(5.11) N/A

(5.12) N/A

(5.13) N/A

(5.14) N/A

(6.4) N/A

(6.6) N/A

(6.7) ∀nodex : [RPD
disp
old−new(nodex) ← ISSserver

old (nodex)]

(6.10) N/A

(6.11) N/A

Table J.16: Customization of NeCoMan’s algorithm for synchronized distributed
reconfiguration: overview of all reconfiguration conditions that become changed in
case of service addition.
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Affected reconfiguration conditions when customizing NeCoMan’s algorithms for

distributed reconfigurations

affected
reconfig-
uration
condition

resulting
safety
condition

(5.1) N/A

(5.4)
∀nodex : [RP client

new (nodex) ← LIext
old−new(nodex)∧

∀nodey 6= nodex : LIint
old−new(nodey)]

(5.6) N/A

(5.7) N/A

(5.8) N/A

(5.9)
∀nodex : [LIint

old−new(nodex) ←
ISSclient

old (nodex) ∧ ISSserver
old (nodex)]

(5.10) ∀nodex : [LIext
old−new(nodex) ← ISSclient

old (nodex)]

(5.11) N/A

(5.12) N/A

(6.1) N/A

(6.2) N/A

(6.4)
∀nodex : [DCold(nodex) ← UOext

old (nodex) ∧ LI
′ext
old−new(nodex)∧

RPD
disp
old−new(nodex) ∧ UOint

old(nodex)]

(6.5)
∀nodex : [LI

′ext
old−new(nodex) ← APD

′mark
new (nodex)∧

∀nodey 6= nodex : APD
disp
old−new(nodey)]

(6.6) ∀nodex : [ISSclient
old (nodex) ← LI

′ext
old−new(nodex)]

(6.8) N/A

(6.9)
∀nodex : [LIext

old−new(nodex) ←
∀nodey 6= nodex : LIint

old−new(nodey)]

Table J.17: Customization of NeCoMan’s algorithm for synchronized distributed
reconfiguration: overview of all reconfiguration conditions that become changed in
case of service removal.
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affected
reconfig-
uration
condition

resulting
safety
condition

(3.2) N/A

(3.3) N/A

(3.6) N/A

(3.8) RP client
new ← LOint

new

(3.9) RP server
new ← LOext

new∧

LOint
new

(3.10) LIint
old−new ← IP server

old

(3.11) LIext
old−new ← IP client

old

(3.12) N/A

(3.13) N/A

(3.14) N/A

(4.4) N/A

(4.5) N/A

(4.9) N/A

(4.10) N/A

Table J.18: Customization of NeCo-
Man’s algorithm for independent dis-
tributed reconfiguration: overview of
all reconfiguration conditions that are
changed in case of service addition.

affected
reconfig-
uration
condition

resulting
safety
condition

(3.1) N/A

(3.4) RP client
new ← LIext

old−new

(3.5) RP server
new ← LIint

old−new

(3.7) N/A

(3.8) N/A

(3.9) N/A

(3.11) LIext
old−new ← ISSclient

old

(3.12) N/A

(4.1) N/A

(4.2) N/A

(4.3) N/A

Table J.19: Customization of NeCo-
Man’s algorithm for independent dis-
tributed reconfiguration: overview of
all reconfiguration conditions that are
changed in case of service removal.
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Affected reconfiguration conditions when customizing NeCoMan’s algorithms for

distributed reconfigurations



Appendix K

Effect of distributed
customizations on
reconfiguration overhead

This appendix evaluates the impact on reconfiguration overhead that some of the
customizations presented in Chapter 6 may bring about. To be precise, we ana-
lyze the first three customizations to NeCoMan’s basic distributed reconfiguration
algorithms1. To evaluate the effect of these customizations, we compare the cost
incurred by NeCoMan’s basic distributed algorithms (depicted in Figures 5.13 and
K.1) with the cost incurred when these customizations are applied. Similar as for
NeCoMan’s local reconfiguration algorithms, this cost will be evaluated in terms
of communication disruption and the time that it takes to complete a reconfigura-
tion (reconfiguration time). Besides, since we target distributed reconfigurations,
we also evaluate the bandwidth that a reconfiguration consumes. This enables to
compare the impact of (among others) sending synchronization messages.

K.1 No coordinated activation

A first customization seeks to optimize synchronized distributed reconfigurations by
omitting the distributed synchronization that is needed to correctly activate new
network service components. As explained in Section 6.2, NeCoMan uses its second
distributed reconfiguration algorithm instead when applying this customization to
its first distributed reconfiguration algorithm. Therefore, to illustrate the effect of
this customization, we compare the cost incurred by using NeCoMan’s algorithms

1These customizations include “no coordinated activation” (see Section 6.2), “activate before
finishing” (see Section 6.3), and “no finishing” (see Section 6.4).
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Figure K.1: Petri net representation of NeCoMan’s algorithm for independent dis-
tributed reconfiguration.



K.1 No coordinated activation 287

for synchronized and independent reconfigurations with each others. These algo-
rithms are depicted in Figures 5.13 and K.1, respectively.

Communication disruption

When NeCoMan employs its algorithm for synchronized distributed reconfiguration,
the operation of all affected client processes located on node x will be interrupted
as from the moment that packets are intercepted on that node for reaching quies-
cence until these packets are released again. End-node applications that (indirectly)
invoke these client processes, therefore, will experience communication disruption
as from the moment that NeCoMan executes IP client

old (nodex) until it completes
RP client

new (nodex). We can infer from the model of NeCoMan’s algorithm for syn-
chronized distributed reconfiguration, which is depicted in Figure 5.13, that this
period of communication disruption equals

∆basic1
disrupt(client) = t(IP client

old (nodex)) + t(ISSclient
old (nodex)) +

t(ISSserver
old (nodex)) + t(AP client

new (nodex)) + t(AP server
new (nodex)) +

t(LIint
old−new(nodex)) + t(LIext

old−new(nodex)) + t(RP client
new (nodex)) +

t(waitForEveryMessageA(nodex)) + t(waitForEveryMessageB(nodex))

where t(waitForEveryMessageA(nodex)) and t(waitForEveryMessageB(nodex)) de-
note the time that NeCoMan must wait for all expected instances of messages A
and B to arrive on node x.

The period in which server processes become disrupted when NeCoMan employs
its algorithm for synchronized distributed reconfiguration, however, is slightly dif-
ferent. Server processes continue accepting and servicing packets (which are sent by
collaborating client processes) until quiescence comes about and a reconfiguration-
safe state is reached. Furthermore, note that the new server processes located on
node x are brought into use once RP client

new is executed on an arbitrary collaborating
node y. So, the period in which server processes located on node x will be disrupted
during the execution of a synchronized distributed reconfiguration equals

∆basic1
disrupt(server) = t(ISSserver

old (nodex)) + t(AP client
new (nodex)) +

t(AP server
new (nodex)) + t(LIint

old−new(nodex)) +

t(synchExecRP client
new (nodey)) + t(RP client

new (nodey))

where t(synchExecRP client
new (nodey)) denotes the time that it takes before NeCoMan

can execute RP client
new on node y.

The period in which client and server processes are interrupted when NeCoMan
employs its second distributed reconfiguration algorithm, in contrast, is similar to
when its local algorithm for distributed services is executed. This is due to the fact
that NeCoMan’s algorithm for independent distributed reconfiguration performs the
distributed execution of its local algorithm for isolated services. Hence, as already
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explained in Section 4.2.1, the period in which the old client processes located on
node x will be disrupted thus equals

∆basic2
disrupt(client) = t(IP client

old (nodex)) + t(IP server
old (nodex)) + t(ISSclient

old (nodex)) +

t(ISSserver
old (nodex)) + t(AP client

new (nodex)) + t(AP server
new (nodex)) +

t(LIext
old−new(nodex)) + t(LIint

old−new(nodex)) +

t(RP client
new (nodex)) + t(RP server

new (nodex))

Besides, the period in which the old server processes located on node x will be
interrupted equals

∆basic2
disrupt(server) = t(IP server

old (nodex)) + t(ISSserver
old (nodex)) +

t(AP client
new (nodex)) + t(AP server

new (nodex)) +

t(LIext
old−new(nodex)) + t(LIint

old−new(nodex)) +

t(RP server
new (nodex))

So, the difference in communication disruption that NeCoMan’s algorithms for
synchronized and independent distributed reconfiguration cause on the affected
client process equals

∆basic1
disrupt(client) − ∆basic2

disrupt(client) = t(waitForEveryMessageA(nodex)) +

t(waitForEveryMessageB(nodex)) −

t(IP server
old (nodex)) − t(RP server

new (nodex))

From this we can conclude that NeCoMan’s algorithm for synchronized dis-
tributed reconfiguration causes less communication disruption on the affected client
processes than its second distributed algorithm if

t(waitForEveryMessageA(nodex)) + t(waitForEveryMessageB(nodex)) <

t(IP server
old (nodex)) + t(RP server

new (nodex))

This will be the case, among others, when the reconfiguration of all affected nodes
occurs perfectly synchronized. This includes that all required instances of mes-
sages A and B have already arrived at node x when NeCoMan completes the
execution of ISSclient

old and LIext
old−new, respectively. Besides, note that the time to

wait for the arrival of all instances of messages A and B may potentially increase
as a reconfiguration involves more nodes hosting server processes.

Similarly, the difference in communication disruption that NeCoMan’s algorithm
for synchronized and independent distributed reconfigurations cause on the affected
server process equals

∆basic1
disrupt(server) − ∆basic2

disrupt(server) = t(synchExecRP client
new (nodey)) +

+t(RP client
new (nodey)) − t(IP server

old (nodex)) − t(RP server
new (nodex))
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NeCoMan’s algorithm for synchronized distributed reconfiguration thus causes
less communication disruption on the affected server processes than its second al-
gorithm if

t(synchExecRP client
new (nodey)) + t(RP client

new (nodey)) <

t(IP server
old (nodex)) + t(RP server

new (nodex))

Reconfiguration time

To define the time that it takes to complete a reconfiguration on node x when
NeCoMan uses its algorithm for synchronized distributed reconfiguration, we con-
sult (again) the model depicted in Figure 5.13. From this model we infer that
∆basic1

reconf equals

t(CCnew) + t(LOext
new) + t(LOint

new) + t(IP client
old ) + t(ISSclient

old ) +

t(ISSserver
old ) + t(AP client

new ) + t(AP server
new ) + t(LIext

old−new) +

t(LIint
old−new) + t(RP client

new ) + t(UOext
old ) + t(UOint

old) + t(DCold) +

t(waitForEveryMessageA) + t(waitForEveryMessageB)

Besides, the time that it takes to complete a reconfiguration on node x when
NeCoMan uses algorithm for independent reconfiguration is similar as when using
the algorithm for synchronized reconfiguration. Hence, ∆basic2

reconf equals

t(CCnew) + t(LOext
new) + t(LOint

new) + t(IP client
old ) + t(ISSclient

old ) +

t(IP server
old ) + t(ISSserver

old ) + t(AP client
new ) + t(AP server

new ) +

t(LIext
old−new) + t(LIint

old−new) + t(RP client
new ) + t(RP server

new ) +

t(UOext
old ) + t(UOint

old) + t(DCold)

Comparing both ∆basic1
reconf with ∆basic2

reconf then results in

∆basic1
reconf − ∆basic2

reconf = t(waitForEveryMessageA) + t(waitForEveryMessageB) −

t(IP server
old ) − t(RP server

new )

This is equal to the difference in communication disruption that NeCoMan’s
algorithms for synchronized and independent distributed reconfigurations cause on
the client processes of node x. Hence, ∆basic1

reconf will be smaller than ∆basic2
reconf when

the reconfiguration of all affected nodes occurs perfectly synchronized.

Bandwidth consumption

Finally, we compare the bandwidth that both algorithms consume. Recall that
NeCoMan’s algorithm for synchronized distributed reconfiguration exchanges syn-
chronization messages A and B. NeCoMan’s algorithm for independent distributed
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reconfiguration, in contrast, does not require distributed synchronization. The first
algorithm therefore consumes more bandwidth than the second one. The exact
bandwidth consumption, however, depends on how many instances of messages A
and B are transmitted during reconfiguration. This, in turn, depends on what
other customizations NeCoMan has applied, as well as on the amount of nodes that
participate in a reconfiguration.

K.2 Activate before finishing

A second customization that applies to NeCoMan’s distributed reconfiguration al-
gorithms involves activating a new service before the old one is finished, as explained
in Section 6.3. This way, NeCoMan seeks to reduce the communication disruption
that a reconfiguration causes.

K.2.1 Synchronized distributed reconfigurations

To evaluate the effect of this customization on the reconfiguration overhead that
NeCoMan’s algorithm for synchronized distributed reconfiguration causes, we com-
pare the cost incurred by the algorithm modelled in Figure 5.13 with the cost
incurred by using the algorithm depicted in Figure 6.5.

Communication disruption

When NeCoMan activates a new service before finishing the old one, the affected
client processes located on node x will be disrupted

1. during the integration of dispatching components,

2. when packet flows are redirected towards the service-external inports of the
new service components,

3. during the removal of the employed marking components, and

4. during the removal of the employed dispatching components.

Hence, the total period in which the continuity of these client processes becomes
disrupted equals

∆basic1+cust2
disrupt (client) = t(LIext

old−new) +

∆disrupt(APD
disp
old−new) + ∆disrupt(RPDmark

new ) + ∆disrupt(RPD
disp
old−new)

Besides, recall that NeCoMan uses its second local reconfiguration algorithm
tailored with the “activate before finishing” customization to execute APDold−new,



K.2 Activate before finishing 291

RPDmark
new , and RPD

disp
old−new on node x. From this, we infer that

∆disrupt(APD
disp
old−new) + ∆disrupt(RPDmark

new ) + ∆disrupt(RPD
disp
old−new) =

3 ∗ t(LIold−new)

such that

∆basic1+cust2
disrupt (client) = t(LIext

old−new) + 3 ∗ t(LIold−new)

So, the difference in communication disruption that both algorithms cause on
the affected client processes equals

∆basic1
disrupt(client) − ∆basic1+cust2

disrupt (client) = t(IP client
old ) + t(ISSclient

old ) +

t(ISSserver
old ) + t(AP client

new ) + t(AP server
new ) + t(LIint

old−new) + t(RP client
new ) +

t(waitForEveryMessageA) + t(waitForEveryMessageB) −

3 ∗ t(LIold−new)

From this conclude that in most cases ∆basic1+cust2
disrupt (client) will be significantly

smaller than ∆basic1
disrupt(client). Note, however, that this difference reduces when the

old service becomes finished in a negligible period of time. Besides, when the recon-
figuration of all affected nodes also occurs perfectly synchronized in this case, and
the new processes employ no active objects, then the difference in communication
disruption reduces to

∆basic1
disrupt(client) − ∆basic1+cust2

disrupt (client) ≈

t(IP client
old ) + t(LIint

old−new) + t(RP client
new ) − 3 ∗ t(LIold−new)

So, in this case switching the order of activation and finishing does not signif-
icantly reduce the communication disruption that a reconfiguration causes on the
affected client processes.

Furthermore, when NeCoMan activates a new service before finishing the old
one, the affected server processes located on node x will be disrupted during the
execution of APD

disp
old−new, RPDmark

new , and RPD
disp
old−new. Hence, the total period in

which the continuity of these server processes becomes disrupted equals

∆basic1+cust2
disrupt (server) = 3 ∗ t(LIold−new(nodex))

So, the difference in communication disruption that switching the order of acti-
vation and finishing causes on the affected server processes equals

∆basic1
disrupt(server) − ∆basic1+cust2

disrupt (server) = t(ISSserver
old (nodex)) +

t(AP client
new (nodex)) + t(AP server

new (nodex)) + t(LIint
old−new(nodex)) +

t(synchExecRP client
new (nodey)) + t(RP client

new (nodey)) −

3 ∗ t(LIold−new(nodex))



292 Effect of distributed customizations on reconfiguration overhead

Similarly as for client processes, this difference in communication disruption
reduces significantly when

• the old service finishes in a negligible period of time,

• the new service processes do not employ active objects, and

• the reconfiguration of all affected nodes also occurs perfectly synchronized.

So, when these conditions are met, the difference in communication disruption
reduces to

∆basic1
disrupt(server) − ∆basic1+cust2

disrupt (server) ≈

t(LIint
old−new(nodex)) + t(RP client

new (nodey)) − 3 ∗ t(LIold−new(nodex))

Hence, in this case switching the order of activation and finishing does not
significantly reduce the communication disruption that a reconfiguration causes on
the affected server processes.

Reconfiguration time

From the model depicted in Figure 6.5, we can infer that the time it takes to
complete a reconfiguration that applies this customizations equals

∆basic1+cust2
reconf = t(CCnew) + t(LOext

new) + t(APDmark
new ) + t(APDdisp

new) +

t(AP client
new ) + t(AP server

new ) + t(LIext
old−new) + t(ISSclient

old ) +

t(ISSserver
old ) + t(RPDmark

new ) + t(RPDdisp
new) + t(UOext

old ) +

t(UOint
old) + t(DCold) + t(waitForEveryMessageC) +

t(waitForEveryMessageA) + t(waitForEveryMessageE)

Comparing this with the time that it takes to complete NeCoMan’s algorithm
for synchronized distributed reconfiguration results in

∆basic1
reconf − ∆basic1+cust2

reconf = t(LOint
new) + t(IP client

old ) + t(RP client
new ) +

t(waitForEveryMessageB) − t(APDmark
new ) − t(APDdisp

new) −

t(RPDmark
new ) − t(RPDdisp

new) − t(waitForEveryMessageC) −

t(waitForEveryMessageE)

So, we cannot conclude that the time it takes to complete a reconfiguration will
always be shorter for one of both scenarios2. Note, however, that for most recon-
figurations ∆basic1

reconf will be smaller than ∆basic1+cust2
reconf . This is because NeCoMan’s

basic algorithm for synchronized distributed reconfiguration needs less synchroniza-
tion than when the activation and finishing actions are switched. Besides, take into

2that is, in contrast to local reconfigurations as explained in Section E.1.1
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account that executing APDdisp
new , RPDmark

new , and RPDdisp
new involves dynamic re-

composition. Hence, the time it takes to complete these actions will in most cases
be larger than the time to complete LOint

new, IP client
old , and RP client

new . Note, however,
that we cannot make hard statements about all this, since much depends on the
efficiency in which the affected nodes execute the reconfiguration operations that
NeCoMan invokes.

Bandwidth consumption

Finally, we compare the bandwidth that both algorithms consume. Recall that
NeCoMan’s algorithm for synchronized distributed reconfiguration transmits syn-
chronization messages A and B. When activating a new service before the old one
is finished, however, three synchronization messages are involved (C, A, and E).
In addition, extra header bits are set to mark packets. Hence, when NeCoMan ap-
plies the “activate before finishing” customization to its algorithm for synchronized
distributed reconfiguration, bandwidth consumption increases.

Conclusion

We conclude from this evaluation that the current version of NeCoMan cannot
always take the most optimal decision when choosing whether or not to apply
customization 6.3. For instance, when replacing a stateless service that takes a
long time to finish, activating the new service before the old one finishes reduces
communication disruption. But, when the service reaches the finished state in a
negligible period of time, NeCoMan’s basic algorithm might be a better choice. This
solution needs less synchronization and lacks the potential performance overhead
that the packet-distinguishing support causes.

K.2.2 Independent distributed reconfigurations

As explained in Section 6.3.2, applying this customization to NeCoMan’s algorithm
for independent distributed reconfiguration is identical as when its local algorithm
for distributed services is involved. The effect of this customization on the over-
head that NeCoMan’s algorithm for independent distributed reconfiguration causes,
therefore, differs in nothing from the evaluation presented is Section E.1.1.

K.3 No finishing

An additional customization to optimize NeCoMan’s distributed reconfiguration
algorithms involves omitting all finishing actions. This customization has been
presented in Section 6.4.
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K.3.1 Synchronized distributed reconfigurations

To evaluate the effect of this customization on the reconfiguration overhead that
NeCoMan’s algorithm for synchronized distributed reconfiguration causes, we com-
pare the cost incurred by the algorithm modelled in Figure 5.13 with the cost
incurred by using the algorithm depicted in Figure 6.7.

Communication disruption

When all finishing actions are omitted, the affected client processes located on
node x are only disrupted while executing LIint

old−new and LIext
old−new. So,

∆basic1+cust4
disrupt (client) = t(LIint

old−new) + t(LIext
old−new)

In addition, recall that server processes do not expose service-external inports
according to our component model. When NeCoMan applies this customization,
the affected server processes located on node x therefore are only disrupted while
executing LIint

old−new. Hence,

∆basic1+cust4
disrupt (server) = t(LIint

old−new(nodex))

Comparing ∆basic1
disrupt(client) with ∆basic1+cust4

disrupt (client) then results in

∆basic1
disrupt(client) − ∆basic1+cust4

disrupt (client) = t(IP client
old ) + t(ISSclient

old ) +

t(ISSserver
old ) + t(AP client

new ) + t(AP server
new ) + t(RP client

new ) +

t(waitForEveryMessageA) + t(waitForEveryMessageB)

Similarly, the difference in communication disruption that both scenarios cause
on the affected server processes equals

∆basic1
disrupt(server) − ∆basic1+cust4

disrupt (server) = t(ISSserver
old (nodex)) +

t(AP client
new (nodex)) + t(AP server

new (nodex)) +

t(synchExecRP client
new (nodey)) + t(RP client

new (nodey))

From these equations we can conclude that omitting all finishing actions indeed
reduces the reconfiguration overhead. Similar to local reconfigurations, however,
this comparison does not take into account the effect of inconsistencies on the net-
work performance in general.

Reconfiguration time

From the model depicted in Figure 6.7 we can deduce that the time it takes to
complete a reconfiguration that involves no finishing action equals

∆basic1+cust4
reconf = t(CCnew) + t(LOext

new) + t(LOint
new) + t(AP client

new ) +

t(AP server
new ) + t(LIext

old−new) + t(LIint
old−new) + t(UOext

old ) +

t(UOint
old) + t(DCold) + t(waitForEveryMessageF )
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Compare this with the time that it takes to complete NeCoMan’s algorithm for
synchronized distributed reconfiguration results in

∆basic1
reconf − ∆basic1+cust4

reconf = t(IP client
old ) + t(ISSclient

old ) + t(ISSserver
old ) +

t(RP client
new ) + t(waitForEveryMessageA) +

t(waitForEveryMessageB) − t(waitForEveryMessageF )

Because message F is the equivalent of message B, we conclude that a reconfig-
uration takes less time to complete when all finishing actions are omitted.

Bandwidth consumption.

Finally, we compare the bandwidth that both algorithms consume. Recall that
NeCoMan’s algorithm for synchronized distributed reconfiguration transmits syn-
chronization messages A and B. When all finishing actions are omitted, however,
only message F is used. So, when NeCoMan applies this customization, bandwidth
consumption decreases.

K.3.2 Independent distributed reconfigurations

Applying this customization to NeCoMan’s algorithm for independent distributed
reconfiguration (again) is identical as when its local algorithm for distributed ser-
vices is involved (as explained in Section 6.4.2). The effect of this customization
on the overhead that NeCoMan’s independent distributed reconfiguration causes,
therefore, differs in nothing from the evaluation presented is Section E.2.1.
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Appendix L

Customization procedure for
distributed reconfigurations

This appendix briefly sketches in what order NeCoMan applies the customizations
presented in Chapter 6 to its distributed reconfiguration algorithms. The flowcharts
depicted in Figures L.1, L.2 and L.3 model how NeCoMan tailors its distributed
reconfiguration algorithms in case of service addition, removal and replacement,
respectively. In addition, Table L.1 lists the service characteristics and reconfigura-
tion semantics that NeCoMan uses to identify which customizations it can apply.
Finally, Figure L.4 illustrates how NeCoMan tailors its algorithm for synchronized
distributed reconfiguration when taking into account the service characteristics and
reconfiguration semantics listed in Table 7.1.

297
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service characteristics
S the old and new services are compatible
C the old service components are stateless
T the old service components share their execution state with their client

applications
E the new components are able to continue processing all ongoing protocol-

transactions
D the new service components restore from or tolerate inconsistent execution

states
U the old service components communicate by a protocol that terminates lo-

cally
V the old server processes do not encapsulate state that goes beyond the exe-

cution of a single protocol transaction
F the new client processes do not employ active objects
G the new server processes do not employ active objects
I the old and new components encapsulate only client processes
J the old and new components encapsulate only server processes
K the old and/or new components encapsulate both client and server processes
L the old and/or new components communicate by a unidirectional commu-

nication protocol

reconfiguration semantics
W the affected nodes impose a safe state by deactivating the old components

immediately and transferring their execution state, instead of waiting until
a quiescent execution state comes about

M the network tolerates packet-reordering
N the affected components operate in a best-effort network
O the network restores from or tolerates inconsistent execution states
X the network can handle inconsistent service compositions

Table L.1: The service characteristics and reconfiguration semantics that NeCoMan
uses to identify which customizations it can apply to its distributed reconfiguration
algorithms. These properties result from the network administrator answering the
questions listed in Tables 6.3 and 6.4.
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Figure L.1: Procedure to customize both distributed reconfiguration algorithms in
case of service addition. The involved service characteristics and reconfiguration
semantics are listed in Table L.1.
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Figure L.2: Procedure to customize both distributed reconfiguration algorithms in
case of service removal. The involved service characteristics and reconfiguration
semantics are listed in Table L.1.
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Figure L.3: Procedure to customize both distributed reconfiguration algorithms in
case of service replacement. The involved service characteristics and reconfiguration
semantics are listed in Table L.1.
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replacing the complete reliability service). This customization takes into account
the service characteristics and reconfiguration semantics listed in Table 7.1.
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Dynamische Software-herconfiguratie in

Programmeerbare Netwerken

Nederlandse samenvatting



Beknopte samenvatting

Programmeerbare netwerken maken het mogelijk voor niet-fabrikanten om de gebruik-
te netwerkinfrastructuur te herprogrammeren. Door de uitvoeringsomgeving van routers,
firewalls, gateways, etc. toegankelijk te maken, kan het gedrag van de gebruikte netwerkin-
frastructuur aanpast worden indien gewenst. Dit maakt van programmeerbare netwerken
een interessante technologie voor het bouwen van adaptieve netwerken, evenals om de
toenemende evolutie van netwerk-software te ondersteunen.

Tevens merken we op dat vele gedistribueerde toepassingen strenge beschikbaarheids-
en performantievereisten opleggen aan de netwerkinfrastructuur, onder andere als gevolg
van toenemende gebruikersverwachtingen. Het onderbreken van de netwerkcommunicatie
om de software van een programmeerbare netwerkknoop bij te werken of aan te pas-
sen kan bijgevolg verstrekkende gevolgen hebben. Dit proefschrift focust zich daarom op
dynamische herconfiguratie van netwerk-software – dat wil zeggen, de uitvoering van her-
configuraties zonder tijdelijk de werking van (een deel van) de netwerkinfrastructuur te
onderbreken.

Of dergelijke dynamische herconfiguraties al dan niet zinvol zijn, hangt in sterke mate
af van de doeltreffendheid en efficiëntie waarmee ze uitgevoerd worden. Bovendien is de
realisatie van een correcte herconfiguratie met een minimale uitvoeringskost een complexe
en foutgevoelige opgave (wat op zijn beurt het voordeel van dynamische herconfiguratie
compromitteert). Dit alles illustreert de nood aan ondersteuning voor dynamische her-
configuraties die (1) de doeltreffende en efficiëntie herconfiguratie van netwerk-software
coördineert en (2) de complexiteit van dergelijke herconfiguraties afschermt van de gebrui-
kers die deze wensen uit te voeren.

Dit proefschrift stelt de NeCoMan (Netwerk herConfiguarie Management) middleware
voor om herconfiguraties uit te voeren in programmeerbare netwerken. Deze middleware
coördineert het dynamisch toevoegen, verwijderen en vervangen van lokale en gedistribu-
eerde netwerkdiensten. Het innovatieve aan deze middleware zit in de mogelijkheid om het
herconfiguratieproces op maat te laten maken. Om dit te realiseren bevat de NeCoMan
middleware verschillende algoritmes evenals een uitgebreide verzameling aanpassingen aan
deze algoritmes. Dit laat de NeCoMan middleware toe om elke herconfiguratie op maat
te maken vertrekkende van (1) een declaratieve beschrijving van de herconfiguratie die
moet worden uitgevoerd en (2) een specificatie van de eigenschappen van de betrokken
netwerkdiensten en van de herconfiguratiesemantiek.

Tot slot vatten we de belangrijkste bijdragen van dit proefschrift kort samen. Naast de
voorstelling van een middleware die de dynamische herconfiguratie van programmeerbare
netwerkknopen coördineert en de validatie hiervan, omvat dit proefschrift een uitgebreide
analyse van de coördinatie die vereist is om correcte lokale en gedistribueerde herconfigu-
raties uit te voeren. Verder stelt dit proefschrift voor om ondersteuning voor dynamische
herconfiguratie aanpasbaar te maken, dit in tegenstelling tot bestaande initiatieven waarbij
typisch een niet-aanpasbaar algoritme wordt gebruikt.
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1 Inleiding

Computernetwerken staan in voor het overbrengen van berichten tussen twee of
meerdere computers die deel uitmaken van een gedistribueerd systeem. Hierbij
is de beschikbaarheid en performantie van het netwerk cruciaal, aangezien dit de
werking van dergelijke gedistribueerde systemen sterk compromitteert. Geduren-
de lange tijd werd getracht aan deze performantie- en beschikbaarheidsvereisten
te voldoen door het netwerk zo simpel mogelijk te houden. De (netwerk-)functies
van het Internet, bijvoorbeeld, zijn lang beperkt gebleven tot routering, de contro-
le van congestie en simpele ondersteuning om kwaliteitsgaranties te bieden (QoS)
[16, 21, 3]. Daarenboven zijn deze netwerkfuncties typisch transparant en ontoegan-
kelijk voor eindgebruikers en (gedistribueerde) toepassingen. Deze tussenliggende
knopen in een netwerk, bijvoorbeeld (zoals routers en switches), vormen typisch
verticaal gëıntegreerde systemen waarvan de functies enkel door de fabrikant ge-
(her)programmeerd kunnen worden.

Sinds het midden van de jaren 90 hebben verschillende initiatieven als doel
gesteld (1) de netwerkinfrastructuur meer open te maken voor wijzigingen en (2)
de programmeerbaarheid ervan te verhogen [4]. Door aanpassen van de netwerk-
software op zowel de tussenliggende knopen als de eindpunten mogelijk te maken,
evolueert het netwerk naar een volledig programmeerbare omgeving. Op die manier
kan het ganse netwerk aangepast worden aan wijzigende omstandigheden en/of
gebruikersvereisten, om zodoende efficiënter te opereren [16].

Tevens merken we op dat vele gedistribueerde toepassingen strenge beschik-
baarheids- en performantievereisten opleggen aan de netwerkinfrastructuur, onder
andere als gevolg van toenemende gebruikersverwachtingen. Het onderbreken van
de netwerkcommunicatie om de software van een programmeerbare netwerkknoop
bij te werken of aan te passen kan bijgevolg verstrekkende gevolgen hebben. Dit
proefschrift focust zich daarom op dynamische herconfiguratie van netwerk-software
– dat wil zeggen, de uitvoering van herconfiguraties zonder tijdelijk de werking van
(een deel van) de netwerkinfrastructuur te onderbreken.

Of dergelijke dynamische herconfiguraties al dan niet zinvol zijn, hangt in ster-
ke mate af van de doeltreffendheid en efficiëntie waarmee ze uitgevoerd worden.
Bovendien is de realisatie van een correcte herconfiguratie met een minimale uit-
voeringskost een complexe en foutgevoelige opgave (wat op zijn beurt het voordeel
van dynamische herconfiguratie compromitteert). Dit alles illustreert de nood aan
ondersteuning voor dynamische herconfiguraties die (1) de doeltreffende en effi-
ciëntie herconfiguratie van netwerk-software coördineert en (2) de complexiteit van
dergelijke herconfiguraties afschermt van gebruikers die deze wensen uit te voeren.

Dit proefschrift stelt de NeCoMan (Netwerk herConfiguarie Management) middle-
ware voor om herconfiguraties uit te voeren in programmeerbare netwerken. Deze
middleware coördineert het dynamisch toevoegen, verwijderen en vervangen van lo-
kale en gedistribueerde netwerkdiensten [10, 11, 12]. Daarbij moet deze middleware
aan de volgende vereisten voldoen:
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• Correcte herconfiguraties. NeCoMan moet steeds correcte herconfigura-
ties uitvoeren, om zodoende te voorkomen dat de werking van het netwerk
faalt als gevolg van het herconfiguratieproces.

• Beperkte herconfiguratiekost. NeCoMan moet elke herconfiguratie op
maat kunnen maken, hierbij rekening houdend met (1) de eigenschappen van
de betrokken netwerkdiensten en (2) de herconfiguratiesemantiek. Op die ma-
nier kan NeCoMan de impact van een herconfiguratie op de beschikbaarheid
en performantie van het netwerk beperken.

• Beperkte openheid. NeCoMan moet de complexiteit van dynamische her-
configuraties van netwerk-software afschermen door middel van een beperkte
herconfiguratie-API. Een gebruiker wordt hierbij verondersteld om alleen te
beschrijven welke herconfiguratie NeCoMan moet uitvoeren, zonder te be-
schrijven hoe deze moet worden uitgevoerd.

• Herbruikbaarheid. NeCoMan moet gebruikt kunnen worden boven ver-
schillende knooparchitecturen (zoals Click [13], DiPS+ [19, 20] en Netkit [6]).
Om dit mogelijk te maken moeten de afhankelijkheden tussen de NeCoMan
middleware en de betrokken knopen beperkt worden gehouden.

2 Positionering

Alvorens in de volgende secties dieper in te gaan op de NeCoMan middleware zelf,
bakenen we eerst duidelijk het bereik van dit proefschrift af. We doen dit door af te
lijnen hoe dit onderzoek zich positioneert in het domein van (1) programmeerbare
netwerken, (2) dynamische software-herconfiguratie en (3) beheerssystemen voor
dynamische herconfiguratie.

2.1 Programmeerbare netwerken

In de laatste 10 jaar zijn verschillende aspecten van programmeerbare netwerken
onderzocht. In dit brede spectrum richt voorliggend onderzoek zich op dynamische
software-herconfiguratie van extern programmeerbare netwerkknopen.

Bij extern programmeerbare netwerkknopen worden de netwerkprogramma’s en
de datapakketten via logisch en/of fysisch gescheiden communicatiekanalen ver-
voerd1. Beide worden bijgevolg onafhankelijk van elkaar op de programmeerbare
knopen verwerkt. Hoewel we niet beweren dat deze aanpak voor netwerk program-
mering dominant zal worden in gebruik, zijn we toch overtuigd van het potentieel

1Deze netwerkprogramma’s variëren van (aan een eind van het spectrum) een scalair argument
dat een bepaalde functie op de knopen oproept, tot (aan de andere kant van het spectrum) mobiele
code geschreven in een Tuning-complete taal die op de knopen gëınterpreteerd en uitgevoerd
wordt [3].
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dat deze aanpak biedt om knopen te programmeren op een gecontroleerde en veilige
manier.

Verder stellen we vast dat de meerderheid van programmeerbare knoop-architec-
turen geen dynamische software-herconfiguratie ondersteunt2. Dergelijke knoop-ar-
chitecturen laten wel toe nieuwe netwerkdiensten in gebruik te nemen, maar onder-
steunen geen herconfiguratie van diensten die reeds gebruikt worden (onder andere
omdat deze zich in een toestand bevinden die verschillend is van de initiële uitvoe-
ringstoestand) [7]. Hierdoor kunnen deze architecturen niet omgaan met wijzigingen
ten gevolge van software-evolutie.

2.2 Dynamische software-herconfiguratie

In het domein van dynamische software-herconfiguratie richt dit onderzoek zich
op dynamische compositionele wijzigingen in buis-en-filter software-architecturen.
In [18] beschrijven McKinley en zijn collega’s dynamische compositionele wijzigingen
als volgt:

Compositionele wijzigingen laten toe algoritmes of structurele componen-
ten te vervangen door nieuwe varianten. Deze flexibiliteit gaat verder
dan het aanpassen van programmavariabelen of het selecteren van een
nieuwe strategie. Compositionele adaptatie maakt het immers mogelijk
om de compositie van de gebruikte software te veranderen tijdens de uit-
voering. Hierdoor kan een applicatie omgaan met aangelegenheden die
niet waren voorzien tijdens de ontwikkelingsfaze.

Compositionele wijziging maakt het bijgevolg mogelijk om dynamische software-
herconfiguratie in programmeerbare netwerken te realiseren. Deze techniek laat
immers toe om netwerk-software die reeds in gebruik is genomen, aan te passen
door software-componenten toe te voegen, te vervangen of te verwijderen. Dit
vereist echter wel dat de software-architectuur van de programmeerbare knopen
voorzien is op dergelijke aanpassingen.

Een architectuur die hiervoor in aanmerking komt is de buis-en-filter (pipe-
and-filter) software-architectuur. Zoals Shaw en Garlan in [22] beschrijven, dwingt
deze architectuur de programmeur om onafhankelijke componenten te ontwikkelen
(filters) die inkomende gegevens verwerken en de resultaten hiervan beschikbaar
maken voor andere filters. Deze componenten worden dan met elkaar verbonden
via connectoren (buizen) om zo een functioneel systeem te verkrijgen. Merk op
dat deze stijl op een natuurlijke manier kan toegepast worden op netwerk-software.
Een protocolstapel, bijvoorbeeld, omvat verschillende functies (zoals fragmentatie,
routering, compressie, enz.) die achtereenvolgens worden uitgevoerd op ontvangen
pakketten.

Ter illustratie hiervan verwijzen we naar Figuur 1, waarin de functionaliteit
van een simpele DiPS+ router wordt voorgesteld (zoals beschreven door Matthijs

2Uitzonderingen hierop zijn Click [13], Ensemble [23], Cactus [5], Netkit [6] en de dynamisch
herconfigureerbare protocolstapel van Lee [15].
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Figuur 1: Voorstelling
van een DiPS+ router.
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Figuur 2: Protocol van een
dienst gebaseerd op TCP.
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Figuur 3: Configuratie
waarbij MPEG-codering
in het netwerk wordt ge-
bruikt.

in [17]). Deze router werd gebouwd in het DiPS+ raamwerk (framework) [19, 20],
een buis-en-filter raamwerk dat werd ontwikkeld binnen DistriNet om aanpasbare
protocolstapels te bouwen. Dit raamwerk werd eveneens in voorliggend onderzoek
gebruikt ter validatie van de NeCoMan middleware.

2.3 Beheerssystemen voor dynamische herconfiguratie

Beheerssystemen voor dynamische herconfiguratie (zoals voorgesteld in [14, 24, 1,
8]) trachten de complexiteit van dynamische software-herconfiguratie van de appli-
catieprogrammeur af te schermen op een applicatie-onafhankelijke manier. Behalve
het raamwerk van Hillman en Warren (beschreven in [8]) bevatten deze systemen
typisch slechts één enkel niet-aanpasbaar herconfiguratie-algoritme. In geval van
programmeerbare netwerken – die aan strikte performantievereisten moeten voldoen
– is deze aanpak echter nefast voor de efficiëntie van een aantal herconfiguraties,
aangezien het niet mogelijk is om elke herconfiguratie op maat te maken. Daarom
stellen we dat het mogelijk moet zijn voor het beheerssysteem om het gebruikte
algoritme aan te passen aan de eigenschappen van de betrokken netwerkdiensten en
van de herconfiguratiesemantiek. Het beheerssysteem moet bijgevolg aanpasbaar
zijn.

2.4 Netwerkdiensten

Tot slot beschrijven we kort de eigenschappen van de netwerkdiensten die in aan-
merking komen voor herconfiguratie door de NeCoMan middleware.
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2.4.1 Gëısoleerde netwerkdiensten

Gëısoleerde netwerkdiensten opereren onafhankelijk van elkaar evenals van andere
netwerkdiensten. Als voorbeeld van dergelijke netwerkdiensten verwijzen we naar
een filter die willekeurig pakketten verwerpt op een verzadigde knoop. Verder gaan
we ervan uit dat deze diensten reactief werken. Ze reageren alleen indien pakketten
verwerkt moeten worden en zullen bijgevolg nooit autonoom opereren. Merk echter
wel op dat dit niet impliceert dat de componenten die deze diensten implementeren
geen “actieve objecten” mogen gebruiken3.

2.4.2 Gedistribueerde netwerkdiensten

Naast gëısoleerde netwerkdiensten is de NeCoMan middleware eveneens in staat
om herconfiguraties uit te voeren waarbij gedistribueerde netwerkdiensten betrok-
ken zijn. Voorbeelden van dergelijke netwerkdiensten zijn codering, compressie,
fragmentatie, betrouwbaarheid en encryptie. Deze diensten hebben de volgende
eigenschappen gemeenschappelijk:

Gedistribueerde afhankelijkheden. Deze diensten worden gëımplementeerd
door gedistribueerde componenten die moeten samenwerken om de betreffende dienst
uit te voeren en bijgevolg sterk afhankelijk zijn van elkaar om de dienst correct uit te
voeren. Deze gedistribueerde afhankelijkheden kunnen worden afgeleid uit het ge-
bruikte communicatieprotocol, dat specificeert hoe een component zijn tegenhanger
aanspreekt. Het protocol dat gëıllustreerd wordt in Figuur 2, bijvoorbeeld, toont
aan hoe beide componenten van een dienst gebaseerd op TCP moeten samenwerken
(en dus van elkaar afhangen) om deze dienst correct uit te voeren4.

Client-server gebaseerde samenwerking. De componenten van de gedistribu-
eerde netwerkdiensten die in aanmerking komen voor herconfiguratie werken samen
volgens het client-server samenwerkingsmodel [2]. Hierbij initieert een client-proces
de aanvraag tot dienstverlening die door een server-proces wordt verwerkt. Toege-
past op gedistribueerde netwerkdiensten start het client-proces dus de uitvoering
van het gemeenschappelijke communicatieprotocol, terwijl het server-proces hierop
reageert (eveneens conform dat protocol). De herzendingscomponent van de dienst
in Figuur 2, bijvoorbeeld, bevat het client-proces terwijl het bijhorende server-proces
vervat zit in de bevestigingscomponent.

Reactief gedrag. Gelijkaardig als voor gëısoleerde diensten zijn de componenten
die gedistribueerde diensten bevatten reactief.

3Een actief object voert bepaalde taken uit in zijn eigen uitvoeringsdraad (thread).
4Merk op dat deze dienst alleen dient ter illustratie. Het bijhorend protocol is niet volledig

conform de RFC van TCP.
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Asynchrone gebufferde communicatie. De componenten die een gedistribu-
eerde netwerkdienst bevatten, communiceren onderling via asynchrone gebufferde
uitwisseling van pakketten. Bijgevolg zullen de betrokken componenten de ont-
vangst van een pakket niet afwachten alvorens een nieuw exemplaar te versturen.
Het netwerk fungeert bijgevolg als een gedeelde buffer die door de samenwerkende
componenten wordt gebruikt om berichten uit te wisselen.

Aantal betrokken componenten. Hoewel de gedistribueerde netwerkdiensten
die in aanmerking komen voor herconfiguratie conceptueel uit twee samenwerkende
componenten bestaan, zullen in bepaalde configuraties meerdere instanties van deze
componenten moeten worden gebruikt. Om dit te illustreren verwijzen we naar
de opstelling in Figuur 3, waarbij MPEG-codering wordt gebruikt rond een traag
draadloos subnet. Om een correct werking van dit netwerk te garanderen, moeten
alle pakketten die dit subnet binnenkomen en verlaten, gecodeerd en gedecodeerd
worden. Dit betekent dat voor deze opstelling meerdere coderende- en decoderende-
componenten moeten worden gebruikt.

2.4.3 Betrouwbaarheidsdienst

In het verdere verloop van deze samenvatting illustreren we NeCoMan’s herconfigu-
ratie-algoritmes aan de hand van een betrouwbaarheidsdienst. Zoals Figuur 4 illu-
streert, bestaat deze betrouwbaarheidsdienst uit een herzendingscomponent (voor-
gesteld als component R) en een bevestigingscomponent (voorgesteld als compo-
nent A). Om een pakket betrouwbaar te verzenden, moet dit worden afgeleverd bij
de “data in-poort” van component R. Deze houdt dan een kopie bij van dit pakket,
voegt een volgnummer toe en start de tijdopnemer die (eventuele) herzendingen van
dit pakket zal initiëren. Vervolgens levert R dit pakket (en alle latere herzendingen)
via zijn “data uit-poort” af aan de onderliggende laag (voorgesteld als OL-Laag).
Wanneer dit pakket zijn bestemming bereikt, wordt het doorgegeven aan de “data
in-poort” van component A. Indien alles in orde is met dit pakket geeft A het door
via zijn “data uit-poort” aan de bovenliggende laag (voorgesteld als BL-Laag) en
stuurt een bevestigingspakket naar de zender. Dit pakket bereikt zijn bestemming
via A’s “ack uit-poort” en R’s “ack in-poort”. Bij het verwerken van dit pakket
verwijdert R het bevestigde datapakket en stopt de bijhorende tijdopnemer.

Merk bovendien op dat we bij componenten van gedistribueerde netwerkdien-
sten een onderscheid maken tussen dienst-externe en dienst-interne poorten. Zo
gebruiken client- en server-processen de dienst-interne poorten van de betrokken
componenten om het gemeenschappelijke communicatieprotocol uit te voeren. In
het geval van de betrouwbaarheidsdienst betekent dit dat de “data uit-poort” en
“ack in-poort” van component R, evenals de “data in-poort” en “ack uit-poort”
van component A, fungeren als dienst-interne poorten. Dienst-externe poorten,
daarentegen, verbinden de betrokken processen met andere componenten in de pro-
tocolstapel die niet deelnemen aan de uitvoering van het communicatieprotocol.
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Figuur 4: Voorstelling van de betrouw-
baarheidsdienst
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Figuur 5: Koppeling tussen knoopspe-
cifieke herconfiguratie-ondersteuning en
de NeCoMan middleware

Dit is bijvoorbeeld het geval voor de “data in-poort” van component R en de “data
uit-poort” van component A.

3 Lokale herconfiguraties

Om de herbruikbaarheid van een herconfiguratie-middleware (zoals NeCoMan) mo-
gelijk te maken moet de koppeling met de onderliggende knooparchitectuur zo
laag mogelijk worden gehouden. NeCoMan bevat daarom zelf geen knoopspeci-
fieke herconfiguratiefunctionaliteit, maar coördineert de uitvoering van een aantal
algemene operaties. Zoals gëıllustreerd in Figuur 5 moeten deze operaties door
de “herconfiguratie-ondersteuning” van de betrokken knooparchitecturen worden
aangeboden en uitgevoerd.

3.1 Herconfiguratie-ondersteuning

De herconfiguratie-ondersteuning van een programmeerbare knoop moet de (knoop-
specifieke) implementatie van acht operaties aanbieden. Vier van deze operaties
dienen om een software-compositie aan te passen, de overige hebben betrekking op
de uitvoeringstoestand van de betrokken knoop.

Zoals Kramer en Magee beschrijven in [14] moeten wijzigingen aan een software-
compositie uitgedrukt worden in functie van diens structuur. De herconfiguratie-
ondersteuning van een programmeerbare knoop wordt daarom verwacht operaties
aan te bieden om (1) componenten aan te maken, (2) deze te verbinden met andere
componenten, (3) componenten los te koppelen van andere componenten en (4)
ze te verwijderen uit de compositie. Op deze manier assisteert de herconfiguratie-
ondersteuning van een knooparchitectuur de NeCoMan middleware in het wijzigen
van een software-compositie (zie Figuur 5).
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Daarnaast moet deze herconfiguratie-ondersteuning de NeCoMan middleware
eveneens bijstaan bij het beheren van de uitvoeringstoestand van de betrokken
knoop. De NeCoMan middleware verwacht hiervoor van vier operaties gebruik
te kunnen maken (zie opnieuw Figuur 5). De eerste operatie is verantwoordelijk
voor het onderscheppen van pakketten en zal aangeroepen worden om lokaal in een
compositie de verwerking van pakketten tijdelijk te onderbreken. De tweede ope-
ratie zorgt ervoor dat de betrokken componenten een correcte uitvoeringstoestand
bereiken. In deze toestand zal de correcte werking van het netwerk niet gecompro-
mitteerd worden door de herconfiguratie. Deze toestand kan bereikt worden door
de betrokken componenten te monitoren of door de uitvoeringstoestand van de ou-
de componenten over te dragen naar de nieuwe componenten. De derde operatie
heeft als taak de actieve objecten (indien aanwezig) van de nieuwe componenten te
starten. Bij het oproepen van de laatste operatie, tenslotte, zullen de pakketten die
bij de uitvoering van de eerste operatie zijn onderschept, terug worden vrijgegeven.

3.2 Lokale herconfiguratie van gedistribueerde netwerkdien-

sten

NeCoMan gebruikt twee (basis)algoritmes om lokale herconfiguraties uit te voe-
ren. Het eerste algoritme coördineert herconfiguraties waarbij een component van
een gedistribueerde netwerkdienst betrokken is. Het andere algoritme daarente-
gen, coördineert herconfiguraties van gëısoleerde netwerkdiensten. Beide algoritmes
hebben als doel een ruim aantal herconfiguraties correct uit te kunnen voeren en
houden bijgevolg geen rekening met de eigenschappen van de betrokken diensten
en/of de herconfiguratiesemantiek.

In het vervolg van deze sectie beschrijven we het algoritme dat NeCoMan ge-
bruikt om een component van een gedistribueerde netwerkdienst op een bepaalde
knoop te vervangen. We illustreren dit algoritme met de vervanging van een ou-
de herzendingscomponent (voorgesteld als Roud) door een nieuwe (voorgesteld als
Rnieuw), die beide deel uitmaken van de gedistribueerde betrouwbaarheidsdienst.
Dit algoritme zal achtereenvolgens (1) de nieuwe component installeren, (2) de oude
component beëindigen, (3) de nieuwe component activeren en (4) de oude compo-
nent verwijderen.

3.2.1 Installatie van nieuwe component

Het vervangen van Roud door Rnieuw begint met de installatie van Rnieuw op de be-
trokken knoop. NeCoMan roept hiervoor de herconfiguratie-ondersteuning van deze
knoop op om Rnieuw aan te maken. Vervolgens draagt NeCoMan deze knoop op om
de nieuwe herzendingscomponent reeds deels te integreren in diens protocolstapel-
compositie. Vermits de nieuwe component nog niet in gebruik wordt genomen in
deze fase, beperkt deze integratie zich tot het linken van de uit-poorten van de
nieuwe component. In het geval van Rnieuw betekent dit dat de “data uit-poort”
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Figuur 6: Installatie van Rnieuw
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Figuur 7: Beëindigen van Roud

verbonden wordt met de in-poort van de onderliggende protocollaag. Figuur 6
illustreert de compositie van de betrokken knoop na deze installatiefaze. Nieuw
aangemaakte componenten en verbindingen worden hierbij voorgesteld door dikke-
re zwarte rechthoeken en lijnen.

3.2.2 Beëindiging van oude component

Vervolgens wordt Roud in een toestand gebracht waarbij de correcte werking van
het netwerk niet gecompromitteerd wordt door het verwijderen van deze component.
NeCoMan roept hiervoor de herconfiguratie-ondersteuning van de betrokken knoop
eerst op om alle pakketten gericht aan Roud te onderscheppen. Zoals gëıllustreerd
in Figuur 7 betekent dit dat er (voor deze herconfiguratie) geen nieuwe pakketten
meer afgeleverd worden aan de externe in-poort van Roud (de “data in-poort”).
Vervolgens draagt NeCoMan de betrokken knoop op om een toestand te bereiken
waarin Roud kan verwijderd worden zonder de correcte werking van het netwerk
te compromitteren. We veronderstellen dat voor deze herconfiguratie de betrokken
knoop Roud controleert tot alle verzonden pakketten bevestigd zijn. Vervolgens
stopt de knoop de tijdopnemer (timer) van Roud en draagt het laatst gebruikte
volgnummer over naar Rnieuw.

3.2.3 Activering van nieuwe component

Na het beëindigen van de oude component kan de nieuwe veilig geactiveerd worden.
Als eerste stap van deze activering roept NeCoMan de knoop op om de verbindingen
van alle betrokken in-poorten aan te passen zodoende dat pakketten aan de nieuwe
component zullen worden afgeleverd. Zoals gëıllustreerd wordt in Figuur 8, houdt
dit in dat (voor het vervangen van Roud door Rnieuw) de “ack in-poort” en “data in-
poort” van Roud worden losgekoppeld van de uit-poorten die behoren tot de onder-
en bovenliggende laag (dit wordt voorgesteld door dikkere grijze lijnen). Vervolgens
worden deze uit-poorten verbonden met de “ack in-poort” en “data in-poort” van
Rnieuw. Van zodra dit gerealiseerd is, draagt NeCoMan de betrokken knoop op
om het herzendingsproces van Rnieuw op te starten, waardoor de tijdopnemer van
Rnieuw begint te lopen. Vanaf nu kan Rnieuw door de knoop in gebruik genomen
worden. NeCoMan voltooit dan de activering van Rnieuw door de betrokken knoop
op te roepen alle onderschepte pakketten vrij te geven (zie Figuur 9).
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Figuur 8: Verbinden
van de in-poorten van
Rnieuw
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Figuur 9: Vrijgeven van
onderschepte pakketten
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Figuur 10: Verwijdering
van Roud

3.2.4 Verwijdering van oude component

Tenslotte wordt de oude (herzendings)component verwijderd van de betrokken knoop,
zoals gëıllustreerd in Figuur 10. Hiervoor moeten de bestaande verbindingen van
deze component met de rest van de protocolstapel eerst worden verbroken. Ne-
CoMan beveelt de betrokken knoop daarom om alle verbindingen met uit-poorten
die behoren tot de oude component te verbreken. Vervolgens draagt NeCoMan de
knoop op om de oude component te verwijderen.

3.3 Lokale herconfiguratie van gëısoleerde netwerkdiensten

Naast het vervangen van componenten die deel uitmaken van een gedistribueerde
netwerkdienst, coördineert NeCoMan ook het toevoegen, verwijderen en vervangen
van componenten die gëısoleerde netwerkdiensten bevatten. Vermits deze com-
ponenten niet samenwerken met andere componenten valt het onderscheid tussen
dienst-externe en dienst-interne poorten weg. Dit heeft op zijn beurt een effect op
de manier waarop de vier fazes van een herconfiguratie worden gëımplementeerd.
NeCoMan gebruikt daarom een licht gewijzigd algoritme om deze herconfiguraties
uit te voeren.

4 Aanpassingen bij lokale herconfiguraties

Door enkel deze basisalgoritmes aan te bieden kan NeCoMan echter niet voor elke
herconfiguratie een beperkte herconfiguratiekost garanderen. Voor sommige her-
configuraties kan deze herconfiguratiekost immers verminderd worden door het ge-
bruikte algoritme aan te passen. Verder moet dit soort aanpassingen kunnen worden
gerealiseerd met minimale inbreng van de gebruiker, dit om de kans op fouten te
beperken.

NeCoMan voorziet daarom een aantal voorgedefinieerde aanpassingen voor bei-
de basisalgoritmes. Deze aanpassingen zijn ontstaan door na te gaan wanneer er
acties veilig van volgorde kunnen gewisseld worden of veilig verwijderd kunnen wor-
den. Van al deze aanpassingen zijn enkel diegene bewaard gebleven die de kost van
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een herconfiguratie verminderen zonder de correctheid ervan in gevaar te brengen.
Om de contributie van de gebruiker te beperken, past NeCoMan deze aanpassin-
gen toe op basis van de eigenschappen van de betrokken netwerkdiensten en van
de herconfiguratiesemantiek. In het verloop van deze sectie schetsen we kort de
belangrijkste van deze aanpassingen.

4.1 Activering nieuwe component alvorens de oude te beëin-

digen

Een eerste aanpassing is gericht op het omkeren van de activerings- en beëindi-
gingsfaze, waardoor de nieuwe component geactiveerd zal worden alvorens de oude
beëindigd is. In dit geval zullen ook geen pakketten meer onderschept worden om de
oude component te beëindigen. Van zodra de nieuwe component in gebruik genomen
is worden pakketten immers exclusief bij de in-poorten van de (nieuwe) component
afgeleverd. Dit alles maakt dat de communicatie-onderbreking die het beëindigen
van de oude component veroorzaakt (bij de uitvoering van de basisalgoritmes),
wordt verminderd.

Om deze aanpassing veilig uit te kunnen voeren, moet er echter aan drie voor-
waarden voldaan zijn. Ten eerste mag de oude component geen toestandsinfor-
matie bevatten. Indien dit toch het geval is, moet de oude component immers
eerst beëindigd worden om te voorkomen dat de herconfiguratie inconsistente uit-
voeringstoestanden voortbrengt. Ten tweede moet de nieuwe component in staat
zijn de uitvoering van protocols die reeds gëınitieerd werden, verder af te handelen.
Wanneer NeCoMan de nieuwe component activeert alvorens de oude beëindigd is,
is er immers geen kennis over de toestand waarin deze protocols zich bevinden op
het moment dat de nieuwe component in gebruik wordt genomen. Tenslotte kan
deze aanpassing enkel toegepast worden indien het netwerk of de applicaties die
hiervan gebruik maken, niet vereisen dat alle pakketten aankomen in de volgorde
waarin ze verstuurd zijn5. Wanneer NeCoMan de oude component beëindigd ter-
wijl de nieuwe reeds in gebruik is genomen, zullen beide componenten (tijdelijk) in
parallel functioneren. Bijgevolg bestaat de kans dat pakketten die door de nieuwe
component worden verwerkt, hun bestemming eerder bereiken dan pakketten die
nog door de oude component worden afgehandeld.

4.2 Geen beëindiging van oude component

Een volgende aanpassing houdt in dat de oude component niet meer wordt beëindigd
alvorens hem te verwijderen. Indien het netwerk hiermee kan omgaan (bijvoorbeeld
door zichzelf te herstellen wanneer inconsistenties optreden) zal dit de communicatie-
onderbreking die beide basisalgoritmes veroorzaken, opnieuw verminderen.

5Dit is bijvoorbeeld het geval wanneer een toestandsloze component (zoals een compressie-
component) wordt gebruikt in een TCP netwerk. TCP garandeert immers dat alle pakketten hun
bestemming bereiken in de volgorde waarin ze werden verzonden.
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Om deze aanpassing veilig uit te kunnen voeren, moet aan volgende voorwaarden
voldaan zijn. Ten eerste moet het netwerk of de gedistribueerde applicaties kun-
nen omgegaan met het verlies van pakketten (bijvoorbeeld door gebruik te maken
van betrouwbaarheidsprotocollen zoals TCP). Wanneer de oude component verwij-
derd wordt alvorens beëindigd te zijn, zullen de pakketten die op dat moment in
verwerking waren immers verloren gaan. Ten tweede moet de nieuwe component
in staat zijn de uitvoering van protocols die reeds gëınitieerd werden, verder af te
handelen. De rede hiervoor is dezelfde als bij het omwisselen van de activerings- en
beëindigingsfaze. Tenslotte mogen inconsistente uitvoeringstoestanden de correcte
werking van het netwerk niet in gevaar brengen. Het netwerk moet deze inconsis-
tente toestanden dus tolereren of moet zelf in staat zijn consistentie te herstellen.

4.3 Toevoeging en verwijdering van gëısoleerde dienst

Het toevoegen (in plaats van vervangen) van een gëısoleerde dienst aan een pro-
grammeerbare knoop, maakt de uitvoering van een aantal herconfiguratie-acties
overbodig. In tegenstelling tot het vervangen van een gëısoleerde dienst moet bij
deze herconfiguratie immers geen oude component verwijderd worden. Verder is
het eveneens overbodig de oude componenten te beëindigen. NeCoMan slaat deze
acties daarom over in dit geval.

Het verwijderen van een gëısoleerde dienst maakt dan weer andere herconfigura-
tie-acties overbodig. Zo moeten er geen tijdopnemers voor de nieuwe dienst gestart
worden en moeten er geen nieuwe componenten gëınstalleerd worden. NeCoMan
zal deze acties bijgevolg overslaan.

5 Gedistribueerde herconfiguraties

Naast lokale herconfiguraties coördineert NeCoMan eveneens de uitvoering van ge-
distribueerde herconfiguraties. NeCoMan gebruikt hiervoor opnieuw twee basisal-
goritmes die dienen om een ruim aantal herconfiguraties uit te voeren (al dan niet
met beperkte herconfiguratiekost). Deze algoritmes verschillen van elkaar door de
manier waarop de betrokken gedistribueerde netwerkdienst wordt beëindigd.

5.1 Beëindiging van gedistribueerde diensten

NeCoMan ondersteunt twee manieren om de oude gedistribueerde netwerkdienst te
beëindigen6. In een eerste aanpak wordt er gewacht tot de componenten van de
oude dienst al hun activiteiten hebben afgerond, dat wil zeggen tot er een rustpunt
is bereikt. In een tweede aanpak wordt de activiteit van elke component afzonderlijk
stopgezet en wordt de toestand van deze componenten overgedragen naar de nieuwe
componenten.

6Herinner dat NeCoMan dit niet zelf realiseert, maar in plaats daarvan de herconfiguratie-
ondersteuning van de betrokken knopen aanroept om de oude componenten te beëindigen.
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5.1.1 Bereiken van rustpunt

Kramer en Magee beschrijven in [14] dat een knoop in een gedistribueerd systeem
een rustpunt (quiescence) bereikt indien (1) deze knoop niet participeert in transac-
ties die hij zelf heeft gestart, (2) deze knoop geen nieuwe transacties zal starten, (3)
deze knoop niet participeert in transacties die door andere knopen werden gestart
en (4) deze knoop niet zal deelnemen aan transacties die door andere knopen zullen
opgestart worden. Bij gedistribueerde netwerkdiensten wordt dit rustpunt bereikt
wanneer (1) elke uitvoering van het gebruikte protocol beëindigd is en (2) geen nieu-
we uitvoeringen van dit protocol gëınitieerd zullen worden tot na het afronden van
de herconfiguratie. De betrouwbaarheidsdienst, bijvoorbeeld, bereikt een rustpunt
wanneer de oude herzendingscomponent geen nieuwe pakketten meer kan verzenden
en alle verstuurde pakketten bevestigd zijn. Op dit moment is een consistente toe-
stand bereikt, waardoor beide betrouwbaarheidscomponenten verwijderd kunnen
worden zonder de werking van het netwerk te compromitteren.

5.1.2 Toestandsoverdracht

Wachten tot elke uitvoering van het gebruikte protocol beëindigd is, kan echter
lang duren, vooral wanneer verschillende uitvoeringen van het gebruikte protocol
tegelijkertijd actief zijn. Dit is uiteraard nefast voor de duur van de herconfigura-
tie evenals voor de veroorzaakte communicatie-onderbreking. NeCoMan’s tweede
basisalgoritme steunt daarom op toestandsoverdracht om de componenten van een
gedistribueerde dienst onmiddellijk te kunnen beëindigen. Hierbij wordt elke com-
ponent van de betrokken dienst afzonderlijk stopgezet zonder rekening te houden
met de toestand waarin de gebruikte protocols zich op dat moment bevinden. Ver-
volgens wordt de uitvoeringstoestand van elk van deze componenten overgedragen
naar de nieuwe componenten om zodoende consistentie te herstellen. Het is duide-
lijk dat deze aanpak alleen kan toegepast worden bij het vervangen van diensten en
dus niet bij het toevoegen of verwijderen ervan.

5.2 Gedistribueerde herconfiguratie met bereiken van rust-

punt

NeCoMan’s eerste basisalgoritme is van toepassing indien de betrokken knopen
wachten tot de componenten van de oude dienst een rustpunt bereiken. We illustre-
ren dit algoritme met de vervanging van de volledige betrouwbaarheidsdienst door
een nieuwe versie.

5.2.1 Installatie van nieuwe dienst

NeCoMan start deze herconfiguratie met de installatie van de nieuwe betrouwbaar-
heidscomponenten op de betrokken knopen. Gelijkaardig als bij lokale herconfigu-
raties draagt NeCoMan elk van de knopen op om de nieuwe componenten aan te
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Figuur 11: Installatie van Rnieuw en
Anieuw
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Figuur 12: Beëindigen van Roud en Aoud

maken en hun uit-poorten te verbinden. Figuur 11 illustreert dit aan de hand van
de installatie van Rnieuw en Anieuw. Merk op dat NeCoMan deze gedistribueerde
installatie niet synchroniseert vermits nieuwe componenten niet in gebruik worden
genomen tijdens hun installatie.

5.2.2 Beëindiging van oude dienst

Vervolgens moeten de oude componenten in hun rusttoestand worden gebracht.
Om dit te realiseren beveelt NeCoMan de betrokken knopen eerst alle pakketten
te onderscheppen die gericht zijn aan de externe in-poorten van deze componenten.
Op die manier wordt voorkomen dat de oude dienst nog nieuwe protocoltransacties
initieert. In het geval van de betrouwbaarheidsdienst wordt dit gerealiseerd door
geen pakketten meer af te leveren aan de “data in-poort” van Roud (zie Figuur 12).

Van zodra deze pakketten onderschept zijn, draagt NeCoMan de betrokken kno-
pen op om de client-processen van de oude dienst te monitoren tot deze hun rust-
punt hebben bereikt. Vervolgens doet NeCoMan hetzelfde voor de server-processen
van deze dienst. Merk op dat de gedistribueerde uitvoering van deze acties gesyn-
chroniseerd moet worden. Van zodra de client-processen op knoop x hun rustpunt
bereikt hebben, zal NeCoMan vanaf deze knoop een synchronisatieboodschap ver-
sturen naar elke knoop y 6= x waarop de server-processen actief zijn waarmee de
client-processen op knoop x samenwerken.

5.2.3 Activering van nieuwe dienst

Van zodra de componenten van de oude dienst hun rustpunt hebben bereikt, acti-
veert NeCoMan de componenten van de nieuwe dienst. Gelijkaardig als bij lokale
herconfiguraties houdt dit in dat verbindingen worden gewijzigd, de processen van
de nieuwe componenten worden opgestart en de onderschepte pakketten worden
vrijgegeven. Figuren 13 en 14 illustreren dit met de activering van de nieuwe be-
trouwbaarheidsdienst.

Om de nieuwe dienst correct te activeren, moet NeCoMan de gedistribueerde
uitvoering van deze acties synchroniseren. Een component C kan immers slechts
in gebruik worden genomen indien alle andere componenten waarmee C zal samen-
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Figuur 13: Verbinden van de in-poorten
van Rnieuw en Anieuw
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Figuur 14: Vrijgeven van onderschepte
pakketten

werken reeds operationeel zijn. NeCoMan zal knoop x daarom pas opdragen om
onderschepte pakketten vrij te geven van zodra alle andere knopen y 6= x via syn-
chronisatieboodschappen te kennen hebben gegeven dat alle verbindingen verlegd
zijn (van de oude naar de nieuwe componenten).

5.2.4 Verwijdering van oude dienst

Tenslotte worden de oude componenten verwijderd. Gelijkaardig als bij lokale her-
configuraties draagt NeCoMan elke knoop op om overblijvende verbindingen met
oude componenten te verbreken alvorens deze componenten te verwijderen. Merk
op dat de gedistribueerde uitvoering van deze acties niet gesynchroniseerd moet
worden aangezien de betrokken componenten reeds beëindigd zijn.

5.3 Gedistribueerde herconfiguratie met toestandsoverdracht

NeCoMan gebruikt een verschillend basisalgoritme wanneer de betrokken knopen
niet wachten tot de oude componenten een rustpunt hebben bereikt maar in plaats
daarvan deze componenten onmiddellijk stopzetten en hun huidige uitvoeringstoe-
stand overdragen naar de nieuwe componenten. Alvorens dit algoritme te bespreken
schetsen we kort de impact van deze aanpak op het herconfiguratieproces.

Zo kan deze aanpak enkel toegepast worden bij het vervangen van diensten
waarbij de oude en nieuwe componenten onderling verenigbaar zijn. Dit is uiter-
aard nooit het geval bij het toevoegen en verwijderen van diensten. Verder is er
geen gedistribueerde synchronisatie vereist om de oude dienst te beëindigen. Het
stopzetten van de betrokken componenten en het overzetten van hun huidige uitvoe-
ringstoestand kan immers onafhankelijk gebeuren voor elke betrokken knoop (dit in
tegenstelling tot wanneer een rustpunt moet bereikt worden voor alle componenten
van de oude dienst).

Tenslotte moet ook de gedistribueerde uitvoering van de activeringsfaze niet
gesynchroniseerd worden. Door de oude componenten onmiddellijk stop te zet-
ten zonder het bereiken van een rustpunt af te wachten, is het mogelijk dat er
nog protocoltransacties actief zijn op het moment dat de nieuwe componenten in
gebruik worden genomen. De nieuwe componenten moeten daarom in staat zijn
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deze protocoltransacties verder uit te voeren. Bovendien vereist NeCoMan bij deze
herconfiguraties ook dat oude componenten pakketten kunnen verwerken die door
componenten van de nieuwe dienst zijn verstuurd. Zodoende kunnen de componen-
ten van de oude en nieuwe dienst elkaars protocoltransacties afwerken, waardoor de
gedistribueerde activering van de nieuwe dienst niet moet gesynchroniseerd worden.

Dit alles heeft tot gevolg dat NeCoMan de betrokken knopen volledig onafhan-
kelijk van elkaar kan herconfigureren. Het basisalgoritme voor deze herconfiguratie
omvat bijgevolg de onafhankelijke uitvoering van NeCoMan’s lokale basisalgoritme
voor het vervangen van componenten die behoren tot een gedistribueerde dienst (zie
Sectie 3.2).

6 Aanpassingen bij gedistribueerde herconfigura-

ties

Analoog als bij lokale herconfiguraties voorziet NeCoMan een aantal voorgedefini-
eerde aanpassingen die het kan toepassen op de gedistribueerde basisalgoritmes. In
het verloop van deze sectie schetsen we kort de belangrijkste van deze aanpassingen.

6.1 Geen gesynchroniseerde activering

Een eerste aanpassing betreft de gedistribueerde synchronisatie die nodig is om de
componenten van een (nieuwe) netwerkdienst op een correcte manier te activeren.
Voor sommige herconfiguraties is deze synchronisatie immers niet vereist. Dit is
onder meer het geval bij de vervanging van een netwerkdienst waarbij oude en
nieuwe componenten onderling verenigbaar zijn. Vermits deze componenten elkaars
protocoltransacties kunnen afwerken, moet de gedistribueerde activering van de
nieuwe dienst niet gesynchroniseerd worden.

Deze synchronisatie is evenmin vereist wanneer het netwerk of de applicaties
kunnen omgaan met diensten die niet op een correcte manier geactiveerd zijn. Als
voorbeeld hiervan verwijzen we naar de toevoeging van een compressiedienst in een
programmeerbaar netwerk. Wanneer de gedistribueerde activering van deze dienst
niet gesynchroniseerd wordt, bestaat het risico dat pakketten gecomprimeerd hun
bestemming bereiken. Dit kan echter voorkomen worden indien het netwerk of de
betrokken applicaties deze pakketten filteren of zelf decoderen.

Merk op dat het ontbreken van gedistribueerde synchronisatie bij het active-
ren van de nieuwe dienst ook invloed heeft op het beëindigen van de oude dienst.
Wanneer oude en nieuwe componenten elkaars protocoltransacties kunnen verwer-
ken is het immers niet meer noodzakelijk om te wachten tot de oude componenten
hun rustpunt hebben bereikt. In plaats daarvan kunnen deze componenten onaf-
hankelijk van elkaar beëindigd worden, waardoor ook hierbij geen gedistribueerde
synchronisatie meer nodig is. NeCoMan gebruikt bijgevolg het algoritme dat ont-
worpen werd om gedistribueerde herconfiguraties met toestandsoverdracht uit te
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voeren wanneer de activering van de nieuwe dienst niet gesynchroniseerd dient te
worden.

6.2 Activering nieuwe dienst alvorens de oude te beëindigen

Een volgende aanpassing is (opnieuw) gericht op het omkeren van de activerings-
en beëindigingsfaze. Deze aanpassing kan enkel veilig worden toegepast op het al-
goritme dat NeCoMan gebruikt voor gedistribueerde herconfiguraties waarbij een
rustpunt moet worden bereikt indien aan volgende voorwaarden is voldaan. Zo
kan de nieuwe dienst enkel geactiveerd worden alvorens de oude is beëindigd wan-
neer beide diensten hun uitvoeringstoestand niet delen met gebruikers. Indien dit
toch het geval is bestaat immers het risico dat deze herconfiguratie inconsistente
uitvoeringstoestanden voortbrengt.

Verder laat NeCoMan niet toe om de nieuwe dienst te activeren alvorens de oude
is beëindigd wanneer bij het beëindigen de uitvoeringstoestand van de oude naar
de nieuwe componenten moet worden overgedragen. Het is immers niet zinvol om,
eenmaal de nieuwe componenten reeds geactiveerd zijn, hun uitvoeringstoestand
nog te overschrijven met hoogstwaarschijnlijk verouderde toestandsinformatie. Ten
slotte kan deze aanpassing enkel toegepast worden wanneer het netwerk of de ap-
plicaties die hiervan gebruik maken niet vereisen dat alle pakketten aankomen in
de volgorde waarin ze verstuurd zijn. De reden hiervoor is dezelfde als bij lokale
herconfiguraties.

De impact van deze aanpassing is groter bij gedistribueerde dan bij lokale her-
configuraties. Zo is er bijvoorbeeld ondersteuning nodig om de pakketten die door
de oude en nieuwe dienst zijn verstuurd van elkaar te onderscheiden, vermits de
oude en de nieuwe componenten tijdens de herconfiguratie (tijdelijk) in parallel
zullen samenwerken. NeCoMan zal daarom gebruik maken van speciale compo-
nenten die pakketten markeren en classificeren op basis van deze markering. Deze
componenten worden dynamisch aan de betrokken compositie toegevoegd tijdens
de installatiefaze en worden nadien verwijderd samen met de oude dienst. Verder
heeft het omkeren van de activerings- en beëindigingsfaze tot gevolg dat er tijdens
de herconfiguratie meerdere synchronisatieboodschappen worden uitgewisseld (3 in
plaats van 2) en dat de activering van de nieuwe dienst beperkt wordt aangepast.

6.3 Geen beëindiging van oude dienst

Een derde aanpassing houdt in dat de oude dienst niet meer wordt beëindigd alvo-
rens de bijhorende componenten te verwijderen. De voorwaarden waaraan voldaan
moet zijn om deze aanpassing veilig toe te passen bij gedistribueerde herconfigura-
ties zijn gelijk aan deze voor lokale herconfiguraties. Merk op dat NeCoMan slechts
één synchronisatieboodschap uitwisselt wanneer het deze aanpassing toepast (in
plaats van twee indien NeCoMan het algoritme gebruikt waarbij de oude dienst een
rustpunt moet bereiken). Deze overblijvende synchronisatieboodschap moet zorgen
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Figuur 15: Lokale beëindiging van pro-
tocol
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Figuur 16: Niet-lokale beëindiging van
protocol

dat de nieuwe componenten op een correcte manier worden geactiveerd.

6.4 Geen beëindiging van oude server-processen

Indien een rustpunt moet worden bereikt bij een gedistribueerde herconfiguratie
draagt NeCoMan’s bijhorende basisalgoritme de betrokken knopen op om zowel
hun client- als server-processen te monitoren tot alle protocoltransacties zijn afge-
werkt. Om de oude betrouwbaarheidsdienst te beëindigen volstaat het echter om
alleen de herzendingscomponent (die het client-proces bevat) te controleren. Van
zodra deze component aangeeft dat alle verzonden pakketten bevestigd zijn, hebben
beide betrouwbaarheidscomponenten immers een rustpunt bereikt. Bijgevolg is het
overbodig om ook Aoud nog extra te controleren.

NeCoMan zal daarom voor sommige herconfiguraties de betrokken knopen op-
dragen om alleen hun client-processen te monitoren tot deze een rustpunt hebben
bereikt. Deze aanpassing kan echter alleen worden toegepast indien de oude com-
ponenten communiceren via een protocol dat eindigt bij het client-proces (zoals
gëıllustreerd wordt in Figuur 15). Vermits dit client-proces de uitvoering van het
protocol ook initieert, kan in dit geval nagegaan worden of alle protocoltransacties
zijn beëindigd door alleen de client-processen te controleren. Wanneer het protocol
eindigt bij een server-proces daarentegen (zoals gëıllustreerd wordt in Figuur 16),
moet NeCoMan de server-processen eveneens controleren om zeker te zijn dat alle
protocoltransacties zijn beëindigd.

6.5 Toevoeging en verwijdering van gedistribueerde diensten

Tot slot beschrijven we kort de aanpassingen die NeCoMan doorvoert wanneer een
gedistribueerde dienst toegevoegd of verwijderd moet worden (in plaats van deze te
vervangen). We beperken ons hierbij tot het algoritme waarbij de oude dienst een
rustpunt bereikt.

Zo worden er bij het toevoegen van een gedistribueerde dienst geen componenten
verwijderd. Verder wordt het beëindigen van de “oude dienst” gerealiseerd door
pakketten tegen te houden op de knopen waarop client-processen zullen worden
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gëınstalleerd. Op de knopen waarop server-processen worden toegevoegd zal er
vervolgens gecontroleerd worden of alle verwachtte pakketten zijn aangekomen7.

Bij het verwijderen van een gedistribueerde dienst daarentegen, moeten er geen
nieuwe componenten gëınstalleerd en geactiveerd worden. NeCoMan zal deze acties
bijgevolg overslaan.

7 Ontwerp

Om hergebruik mogelijk te maken werd het samenstellen van een (op maat ge-
maakt) herconfiguratie-algoritme en de uitvoering van dit algoritme van elkaar los-
gekoppeld. Op die manier kan de logica om herconfiguratie-algoritmes te constru-
eren herbruikt worden voor verschillende knooparchitecturen. Dit is een belangrijk
voordeel gezien de complexiteit van deze logica.

Zoals gëıllustreerd in Figuur 17 werd deze loskoppeling gerealiseerd door de Ne-
CoMan functionaliteit op te splitsen in een script-generator (die de logica bevat om
een herconfiguratie-algoritme op maat te maken) en één of meerdere virtuele ma-
chines (die deze algoritmes zullen uitvoeren). De script-generator creëert voor elke
knoop die deelneemt aan de herconfiguratie een script op basis van (1) een beschrij-
ving van de herconfiguratie die moet uitgevoerd worden, (2) de eigenschappen van
de betrokken diensten, (3) de herconfiguratiesemantiek en (4) de IP-adressen van
de betrokken knopen. Dit script bevat een (knoop-onafhankelijke) beschrijving van
de verschillende acties die de virtuele machine van de betrokken knoop moet uit-
voeren. Bij de uitvoering van dit script wordt de herconfiguratie-ondersteuning van
de betrokken knoop aangesproken om de gespecificeerde herconfiguratie-operaties
uit te voeren. De uitvoering van de synchronisatie-operaties daarentegen, neemt de
virtuele machine zelf voor zijn rekening.

Deze opsplitsing heeft als bijkomend voordeel dat de herconfiguratielogica niet
noodzakelijk op de programmeerbare netwerkknopen zelf moet worden uitgevoerd.
De herconfiguratiescripts kunnen immers perfect op speciaal daartoe voorziene kno-
pen of zelfs buiten het netwerk samengesteld worden. Bij de uitvoering worden
deze scripts dan verdeeld over de betrokken knopen. Op die manier gebruikt de
herconfiguratielogica geen van de (dikwijls schaarse) hulpbronnen (resources) die
de betrokken knopen gebruiken om pakketten te verwerken.

8 Besluit

Als besluit sommen we de bijdragen op van dit onderzoek. We doen dit voor elk
van de domeinen beschreven in Sectie 2.

7Herinner dat NeCoMan zelf geen functionaliteit bevat om dit te realiseren. Dit is de verant-
woordelijkheid voor de herconfiguratie-ondersteuning van de betrokken knopen.
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Figuur 17: Hoog-niveau overzicht van de NeCoMan architectuur

8.1 Programmeerbare netwerken

In de context van programmeerbare netwerken stellen we de NeCoMan middleware
voor om dynamische herconfiguraties van extern programmeerbare netwerkknopen
uit te voeren. Deze middleware coördineert het dynamisch toevoegen, verwijderen
en vervangen van lokale en gedistribueerde netwerkdiensten. Verder voldoet deze
middleware aan de vooropgestelde vereisten:

• Correcte herconfiguraties. De gebruikte basisalgoritmes voldoen aan alle
opgelegde herconfiguratievoorwaarden. Deze herconfiguratievoorwaarden be-
palen de volgorde waarin de verschillende stappen van een herconfiguratie
dienen uitgevoerd te worden. Ook het toepassen van de voorgedefinieerde
aanpassingen brengt de correctheid van een herconfiguratie niet in gevaar, zo-
lang tenminste aan alle voorwaarden is voldaan om de betrokken aanpassing
veilig uit te kunnen voeren.

• Beperkte herconfiguratiekost. Voor sommige herconfiguraties kan de kost
van de basisalgoritmes verminderd worden door het gebruikte algoritme op
maat te maken. NeCoMan voorziet daarom een aantal voorgedefinieerde aan-
passingen die toegepast kunnen worden op de basisalgoritmes. Op die manier
tracht NeCoMan de impact van een herconfiguratie op de beschikbaarheid en
performantie van het netwerk te beperken.



8.2 Dynamische software-herconfiguratie 21

• Beperkte openheid. NeCoMan vereist enkel een beschrijving van (1) de
herconfiguratie die moet uitgevoerd worden en (2) de eigenschappen van de
betrokken diensten en de herconfiguratiesemantiek alvorens een herconfigura-
tie uit te kunnen voeren. Op basis van deze gegevens selecteert NeCoMan het
gepaste basisalgoritme en past hier (indien opportuun) één of meerdere voorge-
definieerde aanpassingen op toe. Zodoende schermt NeCoMan de complexiteit
die eigen is aan (correcte en efficiënte) herconfiguraties van netwerk-software
af van de gebruikers.

• Herbruikbaarheid. Om NeCoMan te kunnen gebruiken boven verschil-
lende knooparchitecturen werd de samenstelling van een (op maat gemaakt)
herconfiguratie-algoritme losgekoppeld van de uitvoering hiervan. Dit laat toe
NeCoMan’s script-generator te herbruiken voor verschillende (knoopspecifie-
ke) virtuele machines. Dit is een belangrijk voordeel gezien de complexiteit
van de logica om herconfiguraties op maat te maken.

De NeCoMan middleware is gevalideerd aan de hand van verschillende herconfi-
guraties. Hierbij werden een compressiedienst, een betrouwbaarheidsdienst en (een
DiPS+ implementatie van) de TCP-booster ontwikkeld aan de Universiteit van
Gent [9] in een DiPS+ netwerk toegevoegd, verwijderden vervangen.

8.2 Dynamische software-herconfiguratie

Dit proefschrift beschrijft hoe NeCoMan de lokale en gedistribueerde uitvoering
van compositionele aanpassingen coördineert. Deze coördinatie volgt uit een aantal
herconfiguratievoorwaarden waaraan voldaan moet worden om correcte en efficiënte
herconfiguraties uit te voeren. Door deze voorwaarden expliciet te maken bieden ze
een hulpmiddel bij de ontwikkeling van nieuwe systemen die dynamische herconfi-
guratie moeten ondersteunen.

8.3 Beheerssystemen voor dynamische herconfiguratie

Tot slot werd in dit proefschrift het gebruik van aanpasbare beheerssystemen voor
dynamische herconfiguratie in programmeerbare netwerken onderzocht. In tegen-
stelling tot bestaande “gesloten” beheerssystemen enerzijds, laat deze aanpak toe
om het gebruikte herconfiguratie-algoritme op maat te maken voor elke herconfi-
guratie. In tegenstelling tot “open” beheerssystemen anderzijds, blijft de gebruiker
afgeschermd van de complexiteit die eigen is aan het samenstellen van een correct
en efficiënt herconfiguratie-algoritme. Zodoende werd een goed evenwicht gevonden
tussen (1) het aanbieden van voldoende flexibiliteit om de efficiëntie van herconfi-
guraties te verbeteren indien mogelijk en (2) het beperken van de kost en risico’s
die verbonden zijn aan dynamische software-herconfiguratie.



REFERENTIES 22

Referenties

[1] João Paulo A. Almeida, Maarten Wegdam, Marten van Sinderen, and Lambert
J. M. Nieuwenhuis. Transparent Dynamic Reconfiguration for CORBA. In
Proceedings of the 3rd International Symposium on Distributed Objects and
Applications (DOA 2001), pages 197–207, Rome, Italy, September 2001. IEEE
Computer Society.

[2] Gregory R. Andrews. Paradigms for process interaction in distributed pro-
grams. ACM Computing Surveys, 23(1):49–90, 1991.

[3] Kenneth L. Calvert, Samrat Bhattacharjee, Ellen Zegura, and James Sterbenz.
Directions in Active Networks. IEEE Communications Magazine, Special Issue
on Programmable Networks, 36(10):72–78, October 1998.

[4] Andrew T. Campbell, Herman G. De Meer, Michael E. Kounavis, Kazuho Miki,
John B. Vicente, and Daniel Villela. A Survey of Programmable Networks.
ACM SIGCOMM Computer Communications Review, 29(2):7–23, April 1999.

[5] Wen-Ke Chen, M.A. Hiltunen, and R.D. Schlichting. Constructing Adaptive
Software in Distributed Systems. In Proceedings of the 21st International Con-
ference on Distributed Computing Systems (ICDCS’01), pages 635–643. IEEE
Computer Society, 2001.

[6] Geoff Coulson, Gordon Blair, David Hutchison, Ackbar Joolia, Kevin Lee,
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