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Propositional Sentences

Propositions: Statements that can be either true or false

10

Impossible statement: ⊥, the one which is always true: >
Let P = {p1, . . . , pn} be a finite set of propositions

The pi ∈ P are called atomic formulas or atoms
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Propositional Sentences

Compound formulas are build by:

atoms, ⊥ and > are formulas

if γ is a formula, then ¬γ is a formula

if γ and δ are formulas, then (γ ∧ δ), (γ ∨ δ), (γ → δ) and
(γ ↔ δ) are formulas

The set LP of all formulas is called propositional language
over P

A formula γ ∈ LP is also called propositional sentence
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Semantics

The meaning of a propositional sentence:
∨ ∧

0 1 1

An assignment of truth values to P is called interpretation

NP denotes the set of all 2n interpretations

γ δ ⊥ > ¬γ γ ∧ δ γ ∨ δ γ → δ γ ↔ δ

0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0
1 0 0 1 0 0 1 0 0
1 1 0 1 0 1 1 1 1
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Logical Consequences

An interpretation x is called a model of γ if γ evaluates to 1

The set of all models of γ is denoted by NP(γ) ⊆ NP

If NP(γ) 6= ∅ then γ is called satisfiable

Entailment Relation

δ is a logical consequence of γ ⇔ NP(γ) ⊆ NP(δ)

we write γ |= δ

γ and δ are logical equivalent (γ ≡ δ) ⇔ NP(γ) = NP(δ)
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Sub-Languages

For a subset Q ⊆ P we call LQ sub-language of LP

If x ∈ NP then x↓Q ∈ NQ denotes the projection of x to Q

More generally: N↓QP = {x↓Q : x ∈ NP}
If x ∈ NQ then x↑P ∈ NP denotes the extension of x to P,
x↑P = {y ∈ NP : y↓Q = x}
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Sub-Languages

Let γ, δ ∈ LP and x ∈ NQ, Q = {q1, . . . , qm} ⊆ P
γQ←x denotes the formula obtained from gamma

by replacing each occurrence of qi by ⊥ if xi = 0
by replacing each occurrence of qi by > if xi = 1

NP(γQ←x) = NP(γ) ∩ x↑P

We call x model of δ relative to γ if γQ←x |= δ and write
x |=γ δ
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Propositional Argumentation System

Definition

Let A and P be two disjoint sets of propositions. If ξ ∈ LA∪P ,
then we call ASP = (ξ, P, A) propositional argumentation
system.

Example

A: assumptions that components work
P: propositions in system description
ξ: system description
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Scenarios

The set NA is of particular interest

Interpretations s ∈ NA are called scenarios

Definition
Let ξ ∈ LA∪P . A scenario s ∈ NA is called

inconsistent relative to ξ ⇔ s |=ξ ⊥
consistent relative to ξ else

The set of all inconsistent scenarios is denoted by IA(ξ)

The set of all consistent scenarios is denoted by CA(ξ)

CA(ξ) = NA − IA(ξ)
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Supporting Scenarios

Now, a second propositional sentence h ∈ LA∪P , called
hypothesis, is given
A scenario s ∈ NA is called a

quasi-supporting scenario for h relative to ξ ⇔ s |=ξ h
supporting scenario for h relative to ξ ⇔ s |=ξ h and s 6|=ξ ⊥
possibly supporting scenario for h relative to ξ ⇔ s 6|=ξ ¬h

QSA(h, ξ): quasi-supporting scenarios for h relative to ξ

SPA(h, ξ): supporting scenarios for h relative to ξ

PSA(h, ξ): possibly supporting scenarios for h relative to ξ
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Assigning Probabilities

We link every assumption ai ∈ A to a prior probability πi

The πi are assumed to be stochastically independent

Definition
A probabilistic argumentation system is a quadruple
PASP = (ξ, P, A,Π), where Π = {π1, . . . , πm} denotes the set
of probabilities assigned to the assumptions ai ∈ A.
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Degree of Support and Possibility

For h ∈ LA∪P we call dqs(h, ξ) = p(QSA(h, ξ)) degree of
quasi-support

But inconsistent scenarios “are not allowed”, i.e.

p′(s) = p(s|CA(ξ)) =

{
p(s)/p(CA(ξ)), if s ∈ CA(ξ),
0, otherwise.

dsp(h, ξ) = p′(SPA(h, ξ)) is called degree of support

dps(h, ξ) = p′(PSA(h, ξ)) is called degree of possibility
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Degree of Support and Possibility

Whenever ξ 6= ⊥:

dps(⊥, ξ) = dsp(⊥, ξ) = 0

dps(>, ξ) = dsp(>, ξ) = 1

h1 |= h2 ⇒ dsp(h1, ξ) ≤ dsp(h2, ξ), dps(h1, ξ) ≤ dps(h2, ξ)

h1 ≡ h2 ⇒ dsp(h1, ξ) = dsp(h2, ξ), dps(h1, ξ) = dps(h2, ξ)

dsp(h, ξ) ≤ dps(h, ξ)
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Frames and Constraints

Given a finite set of variables V = {v1, . . . , vn}
Every v ∈ V has possible values out of Θv , its frame

An expression < v ∈ X >, X ⊆ Θ, is called set constraint

An assignment is a set constraint < v ∈ {θi} >, θi ∈ Θv

C. Schneuwly Probabilistic Argumentation Systems 22/ 31



Propositional Argumentation Systems
Argumentation Systems on Set Constraint Logic

Set Constraint Logic
Constraint-Based Argumentation Systems
Introducing Probabilities

Frames and Constraints

Given a finite set of variables V = {v1, . . . , vn}
Every v ∈ V has possible values out of Θv , its frame

An expression < v ∈ X >, X ⊆ Θ, is called set constraint

An assignment is a set constraint < v ∈ {θi} >, θi ∈ Θv

C. Schneuwly Probabilistic Argumentation Systems 22/ 31



Propositional Argumentation Systems
Argumentation Systems on Set Constraint Logic

Set Constraint Logic
Constraint-Based Argumentation Systems
Introducing Probabilities

Frames and Constraints

Given a finite set of variables V = {v1, . . . , vn}
Every v ∈ V has possible values out of Θv , its frame

An expression < v ∈ X >, X ⊆ Θ, is called set constraint

An assignment is a set constraint < v ∈ {θi} >, θi ∈ Θv

C. Schneuwly Probabilistic Argumentation Systems 22/ 31



Propositional Argumentation Systems
Argumentation Systems on Set Constraint Logic

Set Constraint Logic
Constraint-Based Argumentation Systems
Introducing Probabilities

Frames and Constraints

Given a finite set of variables V = {v1, . . . , vn}
Every v ∈ V has possible values out of Θv , its frame

An expression < v ∈ X >, X ⊆ Θ, is called set constraint

An assignment is a set constraint < v ∈ {θi} >, θi ∈ Θv

C. Schneuwly Probabilistic Argumentation Systems 22/ 31



Propositional Argumentation Systems
Argumentation Systems on Set Constraint Logic

Set Constraint Logic
Constraint-Based Argumentation Systems
Introducing Probabilities

SCL-Formulas

set constraints, ⊥ and > are SCL-formulas

if γ is a SCL-formula, then ¬γ is a SCL-formula

ff γ and δ are SCL-formulas, then (γ ∧ δ), (γ ∨ δ), (γ → δ)
and (γ ↔ δ) are SCL-formulas
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SCL-Formulas

Assigning a value to every v ∈ V is called interpretation

The set of all possible interpretations is denoted by NV

An interpretation is in fact a point x = {x1, . . . , xn} in NV

For a fixed interpretation x , the truth value of < vi ∈ X > is
1 whenever xi ∈ X and 0 otherwise

The truth value of a formula is determined like for
propositional logic
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SCL-Formulas

N(γ) ⊆ NV denotes all interpretations for which γ is true

γ |= δ if, and only if, N(γ) ⊆ N(δ)

γ ≡ δ if, and only if, N(γ) = N(δ)

Let γ ∈ LV and x ∈ NQ with Q ⊆ V . γQ←x is the formula
obtained by replacing each set constraint < vi ∈ X > by >
if xi ∈ X and by ⊥ otherwise

For δ ∈ LV then x |=γ δ means γQ←x |= δ
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Constraint-Based Argumentation Systems

Definition

Let V = {v1, . . . , vn} and E = {e1, . . . , em} be two sets of
variables. If ξ ∈ LV∪E then we call ASC = (ξ, V , E)
constraint-based argumentation system.

The elements of E are called environmental variables

One can introduce in the same way than for propositional
logic the notions consistent/inconsistent, quasi-supporting,
supporting and possibly supporting scenarios
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Probabilistic Argumentation Systems

Suppose every Θei is finite for ei ∈ E

Let πij = p(ei = θij) with θi ∈ Θei and
∑

j πij = 1

The probability distribution assigned to ei is denoted by πi

Definition

We call PASC(ξ, V , E ,Π) with Π = {π1, . . . , πm} probabilistic
constraint-based argumentation system.
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Probabilistic Argumentation Systems

Let s = (θ1j , . . . , θmj) be a particular scenario in NE . The
probability of s is

p(s) =
m∏

i=1

p(ei = θij) =
m∏

i=1

πij .

The probability of S ⊆ NE is then p(S) =
∑

s∈S p(s)

Degree of quasi-support / degree of support / degree of
possibility can be defined like for the propositional case
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